Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kuo Lee)
dc.contributor.authorYan Zengen
dc.contributor.author曾妍zh_TW
dc.date.accessioned2022-11-24T03:05:34Z-
dc.date.available2021-05-04
dc.date.available2022-11-24T03:05:34Z-
dc.date.copyright2021-05-04
dc.date.issued2021
dc.date.submitted2021-04-27
dc.identifier.citationAnderson, D. A., Dutertre, C.-A., Ginhoux, F., Murphy, K. M. (2021). Genetic models of human and mouse dendritic cell development and function. Nature Reviews Immunology, 21(2), 101-115. doi:10.1038/s41577-020-00413-x Arthur, J. S. C., Ley, S. C. (2013). Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology, 13(9), 679-692. doi:10.1038/nri3495 Bagadia, P., Huang, X., Liu, T. T., Durai, V., Grajales-Reyes, G. E., Nitschké, M., . . . Murphy, K. M. (2019). An Nfil3-Zeb2-Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nat Immunol, 20(9), 1174-1185. doi:10.1038/s41590-019-0449-3 Berenson, L. S., Yang, J., Sleckman, B. P., Murphy, T. L., Murphy, K. M. (2006). Selective requirement of p38α MAPK in cytokine-dependent, but not antigen receptor-dependent, Th1 responses. Journal of Immunology, 176(8), 4616-4621. doi:10.4049/jimmunol.176.8.4616 Bevan, M. J. (1976). Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. Journal of Experimental Medicine, 143(5), 1283-1288. doi:10.1084/jem.143.5.1283 Buechler, M. B., Akilesh, H. M., Hamerman, J. A. (2016). Cutting Edge: Direct Sensing of TLR7 Ligands and Type I IFN by the Common Myeloid Progenitor Promotes mTOR/PI3K-Dependent Emergency Myelopoiesis. The Journal of Immunology, 197(7), 2577-2582. doi:10.4049/jimmunol.1600813 Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., Alber, G. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med, 184(2), 747-752. doi:10.1084/jem.184.2.747 Chen, J., Ren, Y., Gui, C., Zhao, M., Wu, X., Mao, K., . . . Zou, F. (2018). Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T α-synuclein model of Parkinson's disease. Cell death disease, 9(6), 700-700. doi:10.1038/s41419-018-0722-7 Chen, Y. L., Lin, H. W., Sun, N. Y., Yie, J. C., Hung, H. C., Chen, C. A., . . . Cheng, W. F. (2019). mTOR Inhibitors Can Enhance the Anti-Tumor Effects of DNA Vaccines through Modulating Dendritic Cell Function in the Tumor Microenvironment. Cancers (Basel), 11(5). doi:10.3390/cancers11050617 Cheung, P. C., Campbell, D. G., Nebreda, A. R., Cohen, P. (2003). Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. Embo j, 22(21), 5793-5805. doi:10.1093/emboj/cdg552 Chougnet, C. A., Thacker, R. I., Shehata, H. M., Hennies, C. M., Lehn, M. A., Lages, C. S., Janssen, E. M. (2015). Loss of Phagocytic and Antigen Cross-Presenting Capacity in Aging Dendritic Cells Is Associated with Mitochondrial Dysfunction. J Immunol, 195(6), 2624-2632. doi:10.4049/jimmunol.1501006 Crow, M., Rönnblom, L. (2018). Report of the inaugural Interferon Research Summit: interferon in inflammatory diseases. Lupus Science Medicine, 5, e000276. doi:10.1136/lupus-2018-000276 Cuenda, A., Rousseau, S. (2007). p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta, 1773(8), 1358-1375. doi:10.1016/j.bbamcr.2007.03.010 Del Prete, A., Zaccagnino, P., Di Paola, M., Saltarella, M., Oliveros Celis, C., Nico, B., . . . Lorusso, M. (2008). Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radic Biol Med, 44(7), 1443-1451. doi:10.1016/j.freeradbiomed.2007.12.037 Del Prete, A., Zaccagnino, P., Di Paola, M., Saltarella, M., Oliveros Celis, C., Nico, B., . . . Lorusso, M. (2008). Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radical Biology and Medicine, 44(7), 1443-1451. Desterke, C., Bilhou-Nabera, C., Guerton, B., Martinaud, C., Tonetti, C., Clay, D., . . . European, E. N. o. M. (2011). FLT3-mediated p38-MAPK activation participates in the control of megakaryopoiesis in primary myelofibrosis. Cancer Res, 71(8), 2901-2915. doi:10.1158/0008-5472.CAN-10-1731 Eisenbarth, S. C. (2019). Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol, 19(2), 89-103. doi:10.1038/s41577-018-0088-1 Everts, B., Amiel, E., Huang, S. C., Smith, A. M., Chang, C. H., Lam, W. Y., . . . Pearce, E. J. (2014). TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol, 15(4), 323-332. doi:10.1038/ni.2833 Gilliet, M., Cao, W., Liu, Y.-J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Reviews Immunology, 8(8), 594-606. doi:10.1038/nri2358 Gilliet, M., Cao, W., Liu, Y. J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol, 8(8), 594-606. doi:10.1038/nri2358 Goedert, M., Cuenda, A., Craxton, M., Jakes, R., Cohen, P. (1997). Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. The EMBO Journal, 16(12), 3563-3571. Jensen, S. S., Gad, M. (2010). Differential induction of inflammatory cytokines by dendritic cells treated with novel TLR-agonist and cytokine based cocktails: targeting dendritic cells in autoimmunity. Journal of Inflammation, 7(1), 37. doi:10.1186/1476-9255-7-37 Jiang, Y., Nakada, D. (2016). Cell intrinsic and extrinsic regulation of leukemia cell metabolism. International Journal of Hematology, 103(6), 607-616. doi:10.1007/s12185-016-1958-6 Lawless, S. J., Kedia-Mehta, N., Walls, J. F., McGarrigle, R., Convery, O., Sinclair, L. V., . . . Finlay, D. K. (2017). Glucose represses dendritic cell-induced T cell responses. Nat Commun, 8, 15620. doi:10.1038/ncomms15620 Monlish, D. A., Bhatt, S. T., Schuettpelz, L. G. (2016). The Role of Toll-Like Receptors in Hematopoietic Malignancies. Frontiers in immunology, 7(390). doi:10.3389/fimmu.2016.00390 Nagai, Y., Garrett, K. P., Ohta, S., Bahrun, U., Kouro, T., Akira, S., . . . Kincade, P. W. (2006). Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity, 24(6), 801-812. doi:10.1016/j.immuni.2006.04.008 Nefedova, Y., Cheng, P., Gilkes, D., Blaskovich, M., Beg, A. A., Sebti, S. M., Gabrilovich, D. I. (2005). Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. Journal of immunology (Baltimore, Md. : 1950), 175(7), 4338-4346. doi:10.4049/jimmunol.175.7.4338 Netea, M. G., Joosten, L. A. B., Latz, E., Mills, K. H. G., Natoli, G., Stunnenberg, H. G., . . . Xavier, R. J. (2016). Trained immunity: A program of innate immune memory in health and disease. Science (New York, N.Y.), 352(6284), aaf1098-aaf1098. doi:10.1126/science.aaf1098 Nussenzweig, M. C., Steinman, R. M., Gutchinov, B., Cohn, Z. (1980). Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. Journal of Experimental Medicine, 152(4), 1070-1084. O’Neill, L. A. J., Pearce, E. J. (2015). Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental Medicine, 213(1), 15-23. doi:10.1084/jem.20151570 Oberkampf, M., Guillerey, C., Mouriès, J., Rosenbaum, P., Fayolle, C., Bobard, A., . . . Dadaglio, G. (2018). Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nature Communications, 9(1), 2241. doi:10.1038/s41467-018-04686-8 Ohta, T., Sugiyama, M., Hemmi, H., Yamazaki, C., Okura, S., Sasaki, I., . . . Kaisho, T. (2016). Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep, 6, 23505. doi:10.1038/srep23505 Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A., Manz, M. G. (2006). Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J Exp Med, 203(1), 227-238. doi:10.1084/jem.20051645 Pearce, E. J., Everts, B. (2015). Dendritic cell metabolism. Nat Rev Immunol, 15(1), 18-29. doi:10.1038/nri3771 Peng, X., He, Y., Huang, J., Tao, Y., Liu, S. (2021). Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Frontiers in immunology, 12, 613492-613492. doi:10.3389/fimmu.2021.613492 Rodrigues, P. F., Tussiwand, R. (2020). Novel concepts in plasmacytoid dendritic cell (pDC) development and differentiation. Molecular Immunology, 126, 25-30. Scharping, N. E., Menk, A. V., Moreci, R. S., Whetstone, R. D., Dadey, R. E., Watkins, S. C., . . . Delgoffe, G. M. (2016). The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity, 45(2), 374-388. doi:10.1016/j.immuni.2016.07.009 Schulz, O., Reis e Sousa, C. (2002). Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology, 107(2), 183-189. doi:10.1046/j.1365-2567.2002.01513.x Schurch, C. M., Riether, C., Ochsenbein, A. F. (2014). Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell, 14(4), 460-472. doi:10.1016/j.stem.2014.01.002 Seillet, C., Jackson, J. T., Markey, K. A., Brady, H. J., Hill, G. R., Macdonald, K. P., . . . Belz, G. T. (2013). CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood, 121(9), 1574-1583. doi:10.1182/blood-2012-07-445650 Shigematsu, H., Reizis, B., Iwasaki, H., Mizuno, S.-i., Hu, D., Traver, D., . . . Akashi, K. (2004). Plasmacytoid Dendritic Cells Activate Lymphoid-Specific Genetic Programs Irrespective of Their Cellular Origin. Immunity, 21(1), 43-53. Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., . . . Liu, Y.-J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science, 284(5421), 1835-1837. Sioud, M., Fløisand, Y. (2007). TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. European journal of immunology, 37, 2834-2846. doi:10.1002/eji.200737112 Steinman, R. M., Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. Journal of Experimental Medicine, 137(5), 1142-1162. Takizawa, H., Boettcher, S., Manz, M. G. (2012). Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood, 119(13), 2991-3002. doi:10.1182/blood-2011-12-380113 Trempolec, N., Muñoz, J. P., Slobodnyuk, K., Marin, S., Cascante, M., Zorzano, A., Nebreda, A. R. (2017). Induction of oxidative metabolism by the p38α/MK2 pathway. Scientific reports, 7(1), 11367-11367. doi:10.1038/s41598-017-11309-7 Villadangos, J. A., Schnorrer, P. (2007). Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol, 7(7), 543-555. doi:10.1038/nri2103 Wang, Y., Lifshitz, L., Gellatly, K., Vinton, C. L., Busman-Sahay, K., McCauley, S., . . . Luban, J. (2020). HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nat Immunol, 21(3), 274-286. doi:10.1038/s41590-020-0593-9 Welner, R. S., Pelayo, R., Nagai, Y., Garrett, K. P., Wuest, T. R., Carr, D. J., . . . Kincade, P. W. (2008). Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood, 112(9), 3753-3761. doi:10.1182/blood-2008-04-151506 Wu, D., Sanin, D. E., Everts, B., Chen, Q., Qiu, J., Buck, M. D., . . . Pearce, E. J. (2016). Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity, 44(6), 1325-1336. doi:10.1016/j.immuni.2016.06.006 Wu, L. (2010). A Flt3L encounter: mTOR signaling in dendritic cells. Immunity, 33(4), 580-582. doi:10.1016/j.immuni.2010.10.001 Xiao, B., Deng, X., Zhou, W., Tan, E.-K. (2016). Flow Cytometry-Based Assessment of Mitophagy Using MitoTracker. Frontiers in Cellular Neuroscience, 10(76). doi:10.3389/fncel.2016.00076 Yu, Y. R., Imrichova, H., Wang, H., Chao, T., Xiao, Z., Gao, M., . . . Ho, P. C. (2020). Disturbed mitochondrial dynamics in CD8(+) TILs reinforce T cell exhaustion. Nat Immunol, 21(12), 1540-1551. doi:10.1038/s41590-020-0793-3 Zeng, Q., Mallilankaraman, K., Schwarz, H. (2019). Increased Akt-Driven Glycolysis Is the Basis for the Higher Potency of CD137L-DCs. Frontiers in immunology, 10(868). doi:10.3389/fimmu.2019.00868
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80385-
dc.description.abstract"樹突狀細胞(DC)包括傳統樹突細胞(conventional DCs , cDC)和槳狀樹突細胞(plasmacytoid DCs , pDC),這兩種細胞在先天和適應性免疫中扮演重要角色。我們先前發現類鐸受體(Toll like receptor, TLR)誘導的發炎反應會減少pDC的發育,但會增加cDC的產生。然而,由發炎反應誘導出的DC的功能仍不清楚。在我們的研究中證實在DC發育過程中接受了TLR7信號會削弱分化出的DC的活化和功能,這包括表現在細胞表面的活化標誌物比如CD40,PD-L1,CD86,MHCII等訊號在pDC和cDC中的表現量均顯著降低。DCs也產生較少的發炎細胞素,例如IL-6,IL-12和TNF-α在RNA和蛋白質的量都減少,然而,IL-10(一種抑制發炎細胞素)則略有增加。此外,用DQ-OVA熒光裂解的方式測試抗原分解能力的實驗中,發現這種能力也被抑制,這些結果顯示發炎反應所誘導的DC具有更大的耐受引發能力。此外,DC發育中的TLR7信號傳導也會降低粒線體膜電位和質量。與對照組相比,事先用R848處理的DC中的粒線體的ROS降低了。這些結果顯示,代謝能力變差有可能與DC功能受損有關。為了研究R848如何改變DC活化及功能,我們使用了STAT3,AKT,mTOR和p38的抑制劑,我們發現mTOR抑製劑(Rapamycin)可部分恢復發炎反應所誘導的DCs活化標誌的表現。p38抑制劑(SB203580)則可以通過上調活化標記和促炎細胞素的產生,明顯逆轉了R848所改變的DC的活化。此外,p38抑制劑也逆轉了TLR7所介導的粒線體ROS,粒線體膜電位和質量的降低。因此,在我們的研究中,已經證明在DC發育過程中TLR7訊號通過活化p38去造成所分化出的DCs的功能的嚴重損害,粒線體動力學和ROS。這些結果或許可以解釋慢性發炎造成的免疫缺陷,並提供治療慢性發炎或自體免疫疾病(例如,發炎性腸炎(Inflammatory bowel disease, IBD)及類風濕性關節炎)的治療方法。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:05:34Z (GMT). No. of bitstreams: 1
U0001-1804202119275600.pdf: 7350319 bytes, checksum: 94cf48eee95877f6ece13dce8744d8c7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝----------------------------------------------------------------------i 中文摘要-------------------------------------------------------------------ii Abstract------------------------------------------------------------------iii Abbreviations-------------------------------------------------------------v Content-------------------------------------------------------------------vi Chapter I Introduction----------------------------------------------------1 1.1 Dendritic cell subset---2 1.2 Dendritic cell development---4 1.3 Hematopoiesis during inflammation---5 1.4 Metabolism is an essential of Immune function modulator---6 1.5 PI3K-AKT-mTOR signaling pathway---7 1.6 P38-MAPK signaling pathway---8 1.7 Rationale and specific aims---9 Chapter II Materials and Methods---10 2.1 Mice---11 2.2 Generation and cell culture of Hoxb8-FL progenitor cell line---11 2.3 Cell sorting---11 2.4 In vitro culture and differentiation of iHSPC with R848 treatment---12 2.5 In vitro culture and differentiation of primary progenitors with R848 treatment---12 2.6 Flow cytometry---13 2.7 Antigen Processing Study---13 2.8 Quantitative real-time PCR---13 2.9 Enzyme-linked immunosorbent assay (ELISA)---14 2.10 Mitochondrial Ros---14 2.11 Mitochondrial membrane potential and mass---14 2.12 Intracellular staining---15 2.13 Immunobloting---15 2.14 Statistical analysis---16 2.15 Formula of reagents---16 Table 1. The list of antibodies---16 Chapter III Results---------------------------------------------------------18 3.1 The effects of TLR7 signaling on reprograming the development and activation of DCs.---19 3.2 TLR7 signaling during DC development impairs the antigen processing ability of cDC.---20 3.3 TLR7 signaling during DC development impairs CpG-stimulated cytokine production from DCs---21 3.4 TLR7 signaling during DC development does not affect TLR9-signaling activation in DCs---22 3.5 WP1066, a STAT3 inhibitor, partially blocks TLR7 signaling-mediated inhibition of DC---22 3.6 mTOR inhibitor partially blocks TLR7 signaling-mediated inhibition of DC activation---23 3.7 SB203580, a p38 inhibitor, blocks TLR7-signaling mediated effects on DC development, activation and cytokine production---24 3.8 TLR7 signaling during DC development alters mitochondrial dynamics---26 3.9 SB203580, a p38 inhibitor blocks TLR7-signaling mediated downregulation of mitochondrial dynamics in DCs---28 Conclusion remarks 29 Chapter IV Discussion 30 4.1 Reprogramming of dendritic cell in presence of TLR7 stimulation---31 4.2 The STAT3/AKT/mTOR pathways are involved in reprogramming of DC development and activation by TLR7 signaling.---33 4.3 The p38 MAPK pathway are essential for reprogramming of dendritic cell development, activation and function by TLR7 signaling.---34 Chapter V References------------------------------------------------------36 Chapter VI Figures----------------------------------------------------------41 Figure 1. TLR7 signaling reprograms DC development and suppresses activation ability of the DCs.---44 Figure 2. TLR7 signaling reprograms DC development and suppresses the activation of BM-derived DCs---49 Figure 3. TLR7 signaling reprograms DC development and suppresses the activation of Lin- Flt3+-derived DCs.---54 Figure 4. TLR7 signaling during DC development impairs the antigen processing ability of cDC.---57 Figure 5. TLR7 signaling during DC development impairs CpG-stimulated cytokine production from DCs.---59 Figure 6. TLR7 signaling during DC development does not affect TLR9-signaling activation in DCs---60 Figure 7. WP1066, a STAT3 inhibitor, partially blocks TLR7 signaling-mediated inhibition of DC.---62 Figure 8. Ly294002, a AKT inhibitor, have no effects on TLR7 signaling-mediated inhibition of DC.---64 Figure 9. Rapamycin, a mTOR inhibitor, partially blocks TLR7 signaling-mediated inhibition of DC activation.---66 Figure 10. SB203580, p38i inhibitor, induced TLR7-signaling mediated DC development and activation.---69 Figure 11. p38i blocks TLR7 signaling mediated inhibition of CpG-stimulated cytokine production by DCs.---71 Figure 12. TLR7 signaling during DC development affects mitochondrial dynamics Figure 13. TLR7 signaling during DC development impairs Mitochondrial membrane potential---77 Figure 14. TLR7 signaling during DC development impairs Mitochondrial mass ---80 Figure 15. TLR7 signaling during DC development impairs Mitochondrial ROS production in DCs.---82 Figure 16. p38i blocks TLR7-signaling-induced downregulation of MDR/MG in DCs. 85 Figure 17. p38i blocks TLR7 signaling-mediated inhibition of mitochondrial ROS production in DCs.---87 "
dc.language.isozh-TW
dc.subject絲裂原活化蛋白激酶zh_TW
dc.subject類鐸受體zh_TW
dc.subject樹突細胞zh_TW
dc.subject發炎zh_TW
dc.subjectp38en
dc.subjectinflammationen
dc.subjectDendritic cellen
dc.subjectToll like receptoren
dc.title發育過程中的第七型類鐸受體訊號抑制樹突細胞的活化和功能zh_TW
dc.titleTLR7 signaling during dendritic cell development suppresses their activation and functionen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中(Hsin-Tsai Liu),嚴仲陽(Chih-Yang Tseng)
dc.subject.keyword類鐸受體,樹突細胞,發炎,絲裂原活化蛋白激酶,zh_TW
dc.subject.keywordToll like receptor,Dendritic cell,inflammation,p38,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202100835
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-04-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1804202119275600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved