Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 法醫學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫家棟(Chia-Tung Shun)
dc.contributor.authorTzu-Cheng Suen
dc.contributor.author蘇子誠zh_TW
dc.date.accessioned2022-11-24T03:05:20Z-
dc.date.available2021-07-07
dc.date.available2022-11-24T03:05:20Z-
dc.date.copyright2021-07-07
dc.date.issued2021
dc.date.submitted2021-06-29
dc.identifier.citation1. Plotnikov EY, Kazachenko AV, Vyssokikh MY, Vasileva AK, Tcvirkun DV, Isaev NK, Kirpatovsky VI, Zorov DB. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int. 2007 Dec;72(12):1493-502. 2. Aragno M, Cutrin JC, Mastrocola R, Perrelli MG, Restivo F, Poli G, Danni O, Boccuzzi G. Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int. 2003 Sep;64(3):836-43. 3. Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis. 1997 Mar;29(3):465-77. 4. Quoilin C, Mouithys-Mickalad A, Lécart S, Fontaine-Aupart MP, Hoebeke M. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Biochim Biophys Acta. 2014 Oct;1837(10):1790-800. 5. Irshad M, Chaudhuri PS. Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol. 2002 Nov;40(11):1233-9. 6. Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem. 2004 Oct 1;279(40):41975-84. 7. Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG. Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med. 2001 Feb 15;30(4):412-24. 8. Hossain MA, De Souza AI, Bagul A, MacPhee IA, Kessaris N, Morsy MA. HSP70, Peroxiredoxin-3 and -6 are upregulated during renal warm ischaemia in a donation after circulatory death model. J Proteomics. 2014 Aug 28;108:133-45. 9. Godoy JR, Oesteritz S, Hanschmann EM, Ockenga W, Ackermann W, Lillig CH. Segment- specific overexpression of redoxins after renal ischemia and reperfusion: protective roles of glutaredoxin 2, peroxiredoxin 3, and peroxiredoxin 6. Free Radic Biol Med. 2011 Jul 15;51(2):552-61. 10. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2011. 11. Kocovski L, Duflou J. Can renal acute tubular necrosis be differentiated from autolysis at autopsy? J Forensic Sci. 2009 Mar;54(2):439-42. 12. Borczuk AC, Berman JW, Factor SM. Distribution of endothelin immunoreactivity in human kidney correlates with antemortem acute renal failure: a possible postmortem immunohistochemical test. Hum Pathol. 1997 Feb;28(2):193-9. 13. Fernandes Bertocchi AP, Campanhole G, Wang PH, Gonçalves GM, Damião MJ, Cenedeze MA, Beraldo FC, de Paula Antunes Teixeira V, Dos Reis MA, Mazzali M, Pacheco-Silva A, Câmara NO. A Role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury. Transpl Int. 2008 Oct;21(10):999-1007. 14. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004 Mar;43(3):405-14. 15. Decuypere JP, Ceulemans LJ, Wylin T, Martinet W, Monbaliu D, Pirenne J, Jochmans I. Plasmatic Villin 1 Is a Novel In Vivo Marker of Proximal Tubular Cell Injury During Renal Ischemia-Reperfusion. Transplantation. 2017 Nov;101(11):e330-e336. 16. Gröne HJ, Weber K, Gröne E, Helmchen U, Osborn M. Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney. Am J Pathol. 1987 Oct;129(1):1-8. 17. Cheng CW, Rifai A, Ka SM, Shui HA, Lin YF, Lee WH, Chen A. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure. Kidney Int. 2005 Dec;68(6):2694-703. 18. Zhang PL, Lun M, Schworer CM, Blasick TM, Masker KK, Jones JB, Carey DJ. Heat shock protein expression is highly sensitive to ischemia-reperfusion injury in rat kidneys. Ann Clin Lab Sci. 2008 Winter;38(1):57-64. 19. Ortega-Trejo JA, Pérez-Villalva R, Barrera-Chimal J, Carrillo-Pérez DL, Morales-Buenrostro LE, Gamba G, Flores ME, Bobadilla NA. Heat shock protein 72 (Hsp72) specific induction and temporal stability in urine samples as a reliable biomarker of acute kidney injury (AKI). Biomarkers. 2015;20(6-7):453-9. 20. Rabkin R, Fervenza F, Tsao T, Sibley R, Friedlaender M, Hsu F, Lassman C, Hausmann M, Huie P, Schwall RH. Hepatocyte growth factor receptor in acute tubular necrosis. J Am Soc Nephrol. 2001 Mar;12(3):531-40. 21. Cheng CW, Ka SM, Yang SM, Shui HA, Hung YW, Ho PC, Su YC, Chen A. Nephronectin expression in nephrotoxic acute tubular necrosis. Nephrol Dial Transplant. 2008 Jan;23(1):101-9. 22. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002 Jul;62(1):237-44. 23. McLaren BK, Zhang PL, Herrera GA. P53 protein is a reliable marker in identification of renal tubular injury. Appl Immunohistochem Mol Morphol. 2004 Sep;12(3):225-9. 24. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015 Jan;30(1):11-26. 25. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707-16. 26. Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001 Jan 15;353(Pt 2):411-6. 27. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015 Jan;12(1):5-23. 28. Thomas CE, Aust SD. Free radicals and environmental toxins. Ann Emerg Med. 1986 Sep;15(9):1075-83. 29. Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. J Toxicol. 2012;2012:645460. 30. Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect. 1994 Dec;102 Suppl 10(Suppl 10):5-12. 31. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994 Jan;65(1):27-33. 32. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul;4(8):118-26. 33. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020 Jul 2;11:694. 34. Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN, Yang Y. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid Med Cell Longev. 2018 Jan 31;2018:3804979 35. Grisham MB, Jourd'heuil D, Wink DA. Review article: chronic inflammation and reactive oxygen and nitrogen metabolism--implications in DNA damage and mutagenesis. Aliment Pharmacol Ther. 2000 Apr;14 Suppl 1:3-9. 36. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412-26. 37. Walker LM, York JL, Imam SZ, Ali SF, Muldrew KL, Mayeux PR. Oxidative stress and reactive nitrogen species generation during renal ischemia. Toxicol Sci. 2001 Sep;63(1):143-8. 38. Xie J, Guo Q. Apoptosis antagonizing transcription factor protects renal tubule cells against oxidative damage and apoptosis induced by ischemia-reperfusion. J Am Soc Nephrol. 2006 Dec;17(12):3336-46. 39. Snoeijs MG, van Bijnen A, Swennen E, Haenen GR, Roberts LJ 2nd, Christiaans MH, Peppelenbosch AG, Buurman WA, Ernest van Heurn LW. Tubular epithelial injury and inflammation after ischemia and reperfusion in human kidney transplantation. Ann Surg. 2011 Mar;253(3):598-604. 40. Serino F, Grevel J, Napoli KL, Kahan BD, Strobel HW. Generation of oxygen free radicals during the metabolism of cyclosporine A: a cause-effect relationship with metabolism inhibition. Mol Cell Biochem. 1993 May 26;122(2):101-12. 41. Helmy MW, Helmy MM, Abd Allah DM, Abo Zaid AM, Mohy El-Din MM. Role of nitrergic and endothelin pathways modulations in cisplatin-induced nephrotoxicity in male rats. J Physiol Pharmacol. 2014 Jun;65(3):393-9 42. Morales AI, Detaille D, Prieto M, Puente A, Briones E, Arévalo M, Leverve X, López-Novoa JM, El-Mir MY. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int. 2010 May;77(10):861-9. 43. Tirkey N, Kaur G, Vij G, Chopra K. Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol. 2005 Oct 15;5:15. 44. Han SY, Mun KC, Choi HJ, Kwak CS, Bae JH, Suh SI, Park SB, Kim HC, Chang EJ. Effects of cyclosporine and tacrolimus on the oxidative stress in cultured mesangial cells. Transplant Proc. 2006 Sep;38(7):2240-1. 45. Rubera I, Duranton C, Melis N, Cougnon M, Mograbi B, Tauc M. Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity. Cell Death Dis. 2013 Oct 3;4(10):e817. 46. Zhang J, Ankawi G, Sun J, Digvijay K, Yin Y, Rosner MH, Ronco C. Gut-kidney crosstalk in septic acute kidney injury. Crit Care. 2018 May 3;22(1):117. 47. Gómez H, Kellum JA. Sepsis-induced acute kidney injury. Curr Opin Crit Care. 2016 Dec;22(6):546-553. 48. Zhang H, Feng YW, Yao YM. Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res. 2018 Nov 26;5(1):41. 49. Quoilin C, Mouithys-Mickalad A, Lécart S, Fontaine-Aupart MP, Hoebeke M. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Biochim Biophys Acta. 2014 Oct;1837(10):1790-800. 50. Feng X, Guan W, Zhao Y, Wang C, Song M, Yao Y, Yang T, Fan H. Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3beta/Nrf2 signaling pathway. J Cell Physiol. 2019 Aug;234(10):18994-19009. 51. Irshad M, Chaudhuri PS. Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol. 2002 Nov;40(11):1233-9 52. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific 'protector' protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem. 1988 Apr;263(10):4704-11. 53. Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994 Nov 4;269(44):27670-8. 54. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7017-21. 55. Rhee SG, Woo HA, Kil IS, Bae SH. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem. 2012 Feb 10;287(7):4403-10. 56. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005 Jun 15;38(12):1543-52. 57. Engel KB, Moore HM. Effects of preanalytical variables on the detection of proteins by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med. 2011 May;135(5):537-43. 58. Lesnikova I, Schreckenbach MN, Kristensen MP, Papanikolaou LL, Hamilton-Dutoit S. Usability of Immunohistochemistry in Forensic Samples With Varying Decomposition. Am J Forensic Med Pathol. 2018 Sep;39(3):185-191. 59. Wu CL, Su TC, Chang CC, Kor CT, Chang CH, Yang TH, Chiu PF, Tarng DC. Tubular Peroxiredoxin 3 as a Predictor of Renal Recovery from Acute Tubular Necrosis in Patients with Chronic Kidney Disease. Sci Rep. 2017 Feb 27;7:43589.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80372-
dc.description.abstract死亡後腎小管產生腐敗或自溶的死後組織變化和急性腎小管損傷十分類似,在顯微組織檢查鑑別兩者相當困難。目前文獻上許多的證據顯示氧化壓力和急性腎小管損傷的致病機轉有關,而其中過氧化物還原酶3 為一種抗氧化劑,維持人體內氧化和還原反應的平衡。本篇研究納入30個切片確診急性腎小管損傷案例,10個腎小管出現死後組織變化的猝死案例和10個正常腎臟組織案例,利用數位影像分析軟體比較過氧化物還原酶3 的免疫組織化學染色在腎小管染色強度。結果顯示急性腎小管損傷在過氧化物還原酶3 染色表現上比腎小管死後組織變化組和正常腎臟組織組來的強,且統計上有顯著差異 (p值<0.0001)。而死後腎小管組織變化組和正常腎臟組織組兩組之間,在過氧化物還原酶3 染色強度上無統計上差異 (P值=0.1306)。本篇研究結論顯示,相比於死後腎小管組織變化的過氧化物還原酶3 免疫組織化學染色表現,當過氧化物還原酶3 在腎小管表現升高時,應考慮急性腎小管損傷的發生。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:05:20Z (GMT). No. of bitstreams: 1
U0001-0906202119135200.pdf: 1894450 bytes, checksum: 669b42739302fa415692e10fcf64fc0a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"國立臺灣大學碩士學位論文口試委員會審定書 I 致謝 II 中文摘要 III Abstract IV Chapter one: Introduction 1 Chapter two: Material and Methods 2 Section one: Material 2 Section two: Methods 2 1. Histopathology 3 2. Immunohistochemistry 3 3. Immunohistochemical scoring system 4 4. Statistical analysis 4 Chapter three: Results 4 Section one: Histopathology 4 Section two: Immunohistochemistry 5 1. Peroxiredoxin 3 staining in normal control group 5 2. Peroxiredoxin 3 staining in postmortem group 5 3. Peroxiredoxin 3 staining in acute tubular injury group 5 4. Statistical analysis of quantitative immunohistochemical staining value between control, postmortem and acute tubular injury groups 6 Chapter four: Discussion 6 Section one: Challenge to diagnose acute tubular injury at postmortem examination 6 Section two: Oxidative stress, free radicals and related by-products 8 Section three: Relationship between oxidative stress and acute tubular injury 9 1. Ischemia/reperfusion induced acute tubular injury and oxidative stress 9 2. Nephrotoxic agent induced acute tubular injury and oxidative stress 10 3. Septic acute tubular injury and oxidative stress 11 Section four: Functional classes of antioxidant 12 Section five: Peroxiredoxin as an antioxidant 12 Section six: Peroxiredoxin 3 and acute tubular injury 13 Section seven: Study result discussion 13 1. Discussion of staining result in normal control group 14 2. Discussion of staining result in postmortem group 14 3. Discussion of staining result in acute tubular injury group 15 Section eight: Advantages of digital image analytic software 16 Section nine: Limitation of the study 16 Chapter five: Conclusion 17 Reference 18"
dc.language.isoen
dc.subject過氧化物還原酶3zh_TW
dc.subject急性腎小管損傷zh_TW
dc.subject死後變化zh_TW
dc.subject氧化壓力zh_TW
dc.subjectpostmortem changeen
dc.subjectperoxiredoxin 3en
dc.subjectoxidative stressen
dc.subjectacute tubular injuryen
dc.title過氧化物還原酶3 鑑別生前急性腎小管損傷和腎小管死後變化之免疫組織化學染色的研究zh_TW
dc.titleImmunohistochemical study of peroxiredoxin 3 expression in differentiating antemortem acute tubular injury from postmortem change of renal tubulesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許倬憲(Hsin-Tsai Liu),林維洲(Chih-Yang Tseng)
dc.subject.keyword急性腎小管損傷,死後變化,過氧化物還原酶3,氧化壓力,zh_TW
dc.subject.keywordacute tubular injury,postmortem change,peroxiredoxin 3,oxidative stress,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202100983
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-06-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept法醫學研究所zh_TW
顯示於系所單位:法醫學科所

文件中的檔案:
檔案 大小格式 
U0001-0906202119135200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved