Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳虹諺(Hungyen Chen)
dc.contributor.authorYu-Chuan Chenen
dc.contributor.author陳昱權zh_TW
dc.date.accessioned2022-11-24T03:05:05Z-
dc.date.available2023-06-30
dc.date.available2022-11-24T03:05:05Z-
dc.date.copyright2021-07-09
dc.date.issued2021
dc.date.submitted2021-06-28
dc.identifier.citationAcock, A. C., Stavig, G. R. (1979). A measure of association for nonparametric statistics. Social Forces, 57(4), 1381-1386. Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110. Ali, J., Khan, R., Ahmad, N., Maqsood, I. (2012). Random forests and decision trees. International Journal of Computer Science Issues (IJCSI), 9(5), 272. Arlot, S., Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79. Asibi, A. E., Chai, Q., Coulter, J. A. (2019). Rice blast: A disease with implications for global food security. Agronomy, 9(8), 451. Bakar, M. A., Abdullah, A., Rahim, N. A., Yazid, H., Misman, S., Masnan, M. (2018). Rice leaf blast disease detection using multi-level colour image thresholding. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-15), 1-6. Bandumula, N. (2018). Rice production in Asia: key to global food security. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(4), 1323-1328. Bradski, G., Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. ' O'Reilly Media, Inc.'. Chen, W.-L., Lin, Y.-B., Ng, F.-L., Liu, C.-Y., Lin, Y.-W. (2019). RiceTalk: Rice Blast Detection using Internet of Things and Artificial Intelligence Technologies. IEEE Internet of Things Journal, 7(2), 1001-1010. Gongora-Canul, C., Salgado, J., Singh, D., Cruz, A., Cotrozzi, L., Couture, J., Rivadeneira, M., Cruppe, G., Valent, B., Todd, T. (2020). Temporal dynamics of wheat blast epidemics and disease measurements using multispectral imagery. Phytopathology, 110(2), 393-405. Islam, T., Sah, M., Baral, S., Choudhury, R. R. (2018). A faster technique on rice disease detectionusing image processing of affected area in agro-field. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Kato, H. (2001). Rice blast disease. Pesticide outlook, 12(1), 23-25. Kolde, R., Kolde, M. R. (2015). Package ‘pheatmap’. R package, 1(7), 790. Leng, C., Tang, C. Y. (2012). Sparse matrix graphical models. Journal of the American Statistical Association, 107(499), 1187-1200. Liang, W.-j., Zhang, H., Zhang, G.-f., Cao, H.-x. (2019). Rice blast disease recognition using a deep convolutional neural network. Scientific reports, 9(1), 1-10. Liao, S., Liu, L.-Y., Chen, T.-A., Chen, K.-Y., Hsieh, F. (2021). Color-complexity enabled exhaustive color-dots identification and spatial patterns testing in images. PloS one, 16(5), e0251258. Luo, Y.-h., Jiang, P., Xie, K., Wang, F.-j. (2019). Research on optimal predicting model for the grading detection of rice blast. Optical Review, 26(1), 118-123. Marchant-Shapiro, T. (2015). Chi-square and Cramer's v: what do you expect. Statistics for Political Analysis: Understanding the Numbers. London, UK: SAGE Publications. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., Lin, C.-C., Meyer, M. D. (2019). Package ‘e1071’. The R Journal. Murtagh, F., Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86-97. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote sensing of environment, 48(2), 119-126. Qi, L., Ma, X. (2009). Rice blast detection using multispectral imaging sensor and support vector machine. 2009 Reno, Nevada, June 21-June 24, 2009, RColorBrewer, S., Liaw, M. A. (2018). Package ‘randomForest’. University of California, Berkeley: Berkeley, CA, USA. Ripley, B., Venables, W., Ripley, M. B. (2015). Package ‘class’. The Comprehensive R Archive Network. Safavian, S. R., Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7), 676-682. Sinwar, D., Kaushik, R. (2014). Study of Euclidean and Manhattan distance metrics using simple k-means clustering. Int. J. Res. Appl. Sci. Eng. Technol, 2(5), 270-274. Therneau, T., Atkinson, B., Ripley, B., Ripley, M. B. (2015). Package ‘rpart’. Available online: cran. ma. ic. ac. uk/web/packages/rpart/rpart. pdf (accessed on 20 April 2016). Wang, L. (2005). Support vector machines: theory and applications (Vol. 177). Springer Science Business Media. Yao, Q., Guan, Z., Zhou, Y., Tang, J., Hu, Y., Yang, B. (2009). Application of support vector machine for detecting rice diseases using shape and color texture features. 2009 international conference on engineering computation, Yuan, J., Wang, W., Zheng, Q. (2020). Research on Recognition of Rice Panicle Blast in Cold Region Based on UAV. International Workshop of Advanced Manufacturing and Automation, Zhou, X.-G., Zhang, D., Lin, F. (2021). UAV Remote Sensing: An Innovative Tool for Detection and Management of Rice Diseases. In Diagnostics of Plant Diseases. IntechOpen. Zoran, D., Weiss, Y. (2009). Scale invariance and noise in natural images. 2009 IEEE 12th International Conference on Computer Vision, 周巧盈, 巫思揚, 陳琦玲. (2018). 應用無人飛機航拍影像協助農業勘災—以香蕉災損影像判釋為例. Journal of Photogrammetry and Remote Sensing, 23(2), 83-101. 林富雄. (2006). 水稻產量, 品質及抗病蟲害育種的回顧及展望. 作物, 環境與生物資訊, 3(4), 285-296. 白祐瑋. (2017). 無人機窄波段多光譜影像於地物分類之研究. 成功大學測量及空間資訊學系學位論文, 1-80. 蔡武雄. (1988a). 穗稻熱病引起水稻產量損失估計. 中華農業研究, 37(1), 86-90. 蔡武雄. (1988b). 葉稻熱病引起水稻產量損失估計. 中華農業研究. 蔡武雄, 李新傳, 楊涌祚, 游俊明, 呂文通, 簡錦忠. (1981). 防治稻熱病藥劑之藥效. 中華農業研究.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80358-
dc.description.abstract稻米為亞洲地區國家主要糧食作物之一,但在稻米生產期常面臨病害問題造成產量減產,其中影響最大的一個為水稻稻熱病。根據嘉義農業試驗分所的研究在不同罹病時期以及罹病等級所造成的產量損失會有明顯差異,在早期進行防治與在較晚期進行防治相比,水稻產量損失可以達到3倍以上。然而罹病狀態的判斷需要專業的知識,在專業人員的人力缺乏下,難以達成全田區的偵測。 本研究中透過無人機所拍攝之多光譜影像並以全新的影像處理方式建立新的光譜特徵。將每個光譜資料切分成不同大小之類別,重新組合成新光譜光段組合後計算該特徵於田區中發生頻率。並將罹病率與罹病株率利用階層式分群分為高罹病狀態與低罹病狀態,配合熱圖(heatmap)以及階層式分群探討在不同種發生光譜光段組合頻率對應高罹病、低罹病罹病狀態之間的關係,並利用Cramer’s V衡量罹病狀態以及該光譜特徵之相關性。 並利用K近鄰分類法、支持向量機、決策樹以及隨機森林四種常用的分類模型將各光譜光段頻率作為特徵偵測水稻罹病狀態。其罹病狀態的判斷正確率最高可達78.18%。於實際田間應用可輔助農民在大範圍水稻田區偵測其罹病狀態以及罹病的區域,並可依此偵測結果對水稻田稻熱病的危害進行風險管理以及病害防治處理。於改良場育種人員來說,可以在試驗的初期於多水稻品種中輔助快速篩選掉高罹病狀態的水稻品種,真正落實並降低專業人力的匱乏。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:05:05Z (GMT). No. of bitstreams: 1
U0001-1706202119263400.pdf: 14786631 bytes, checksum: bf538b0928fb2b01ac30bd2508528775 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv I 前言 1 1 從糧食安全層面來看水稻稻熱病的影響 1 2 水稻稻熱病之影像辨識 2 (1)近距離影像偵測稻熱病 2 (2)無人機影像偵測稻熱病 3 3 探討各光譜間的關係所衍生特徵於稻熱病偵測 3 II 材料與方法 5 1 資料介紹與前處理 5 (1)罹病率與罹病株率與罹病狀態分群 5 多光譜影像資料前處理 6 2 光譜光段組合與頻率處理以及計算 9 3 統計分析方法與機器學習模型 11 (1)階層式分群分析 11 (2)卡方檢定與Cramer’s V 12 (3)機器學習模型 13 (4)十折交叉驗證(10-Fold Cross Validation) 14 III 結果與討論 15 1 專家標註資料進行罹病狀態分群 15 各光譜與光段分割方式組合探索式分群分析 18 2 利用分類器進行罹病狀態分類辨識 22 IV 總結 25 1 研究流程彙整 25 2 光譜光段與水稻稻熱病罹病狀態關聯性 26 3 機器學習模型偵測水稻稻熱病罹病狀態 27 4 實際應用之輔助決策建議 27 V 參考文獻 28 VI 圖附錄 光譜光段與罹病狀態之關係(節錄 可見光譜包含/不包含土壤資訊分割光段數16至128與可見光加進紅光包含/不包含土壤資訊分割光段數16至64) 32
dc.language.isozh-TW
dc.subject機器學習zh_TW
dc.subject水稻稻熱病zh_TW
dc.subject病害偵測zh_TW
dc.subject無人機影像zh_TW
dc.subjectMachine learningen
dc.subjectRice blasten
dc.subjectDisease detectionen
dc.subjectUAV imageen
dc.title應用影像資料分群分析及機器學習偵測水稻稻熱病zh_TW
dc.titleDetect Rice Blast Disease by Applying Image Data Clustering Analysis and Machine Learningen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor劉力瑜(Li-Yu Liu)
dc.contributor.oralexamcommittee蔡育彰(Hsin-Tsai Liu),(Chih-Yang Tseng)
dc.subject.keyword水稻稻熱病,病害偵測,無人機影像,機器學習,zh_TW
dc.subject.keywordRice blast,Disease detection,UAV image,Machine learning,en
dc.relation.page45
dc.identifier.doi10.6342/NTU202101036
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-06-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2023-06-30-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-1706202119263400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
14.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved