Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊泮池(Pan-Chyr Yang)
dc.contributor.authorWen-Hsin Changen
dc.contributor.author張文馨zh_TW
dc.date.accessioned2022-11-24T03:05:00Z-
dc.date.available2022-01-26
dc.date.available2022-11-24T03:05:00Z-
dc.date.copyright2022-01-26
dc.date.issued2022
dc.date.submitted2022-01-16
dc.identifier.citation1. Herbst RS, Morgensztern D, Boshoff C: The biology and management of non-small cell lung cancer. Nature 2018, 553:446-454. 2. Siegel RL, Miller KD, Fuchs HE, Jemal A: Cancer Statistics, 2021. CA Cancer J Clin 2021, 71:7-33. 3. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW: Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997, 17:353-360. 4. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW, Yang PC: Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 2001, 61:5223-5230. 5. Chen CH, Chuang SM, Yang MF, Liao JW, Yu SL, Chen JJ: A novel function of YWHAZ/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Mol Cancer Res 2012, 10:1319-1331. 6. Chen CC, Chen HY, Su KY, Hong QS, Yan BS, Chen CH, Pan SH, Chang YL, Wang CJ, Hung PF, et al: Shisa3 is associated with prolonged survival through promoting beta-catenin degradation in lung cancer. Am J Respir Crit Care Med 2014, 190:433-444. 7. Chang WH, Ho BC, Hsiao YJ, Chen JS, Yeh CH, Chen HY, Chang GC, Su KY, Yu SL: JAG1 Is Associated with Poor Survival through Inducing Metastasis in Lung Cancer. PLoS One 2016, 11:e0150355. 8. Chen CH, Chang WH, Su KY, Ku WH, Chang GC, Hong QS, Hsiao YJ, Chen HC, Chen HY, Wu R, et al: HLJ1 is an endogenous Src inhibitor suppressing cancer progression through dual mechanisms. Oncogene 2016, 35:5674-5685. 9. Hsu CY, Chang GC, Chen YJ, Hsu YC, Hsiao YJ, Su KY, Chen HY, Lin CY, Chen JS, Chen YJ, et al: FAM198B Is Associated with Prolonged Survival and Inhibits Metastasis in Lung Adenocarcinoma via Blockage of ERK-Mediated MMP-1 Expression. Clin Cancer Res 2018, 24:916-926. 10. Cancer Genome Atlas Research N: Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511:543-550. 11. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173:321-337 e310. 12. Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, et al: Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2020, 182:226-244 e217. 13. Wu Z, Huang R, Yuan L: Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 2019, 676:108138. 14. Bertino JR, Waud WR, Parker WB, Lubin M: Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther 2011, 11:627-632. 15. Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, Vazquez F, Weir BA, Fitzgerald ME, Tanaka M, et al: MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 2016, 351:1214-1218. 16. Marjon K, Cameron MJ, Quang P, Clasquin MF, Mandley E, Kunii K, McVay M, Choe S, Kernytsky A, Gross S, et al: MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis. Cell Rep 2016, 15:574-587. 17. Mavrakis KJ, McDonald ER, 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G, et al: Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 2016, 351:1208-1213. 18. Guccione E, Richard S: The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 2019, 20:642-657. 19. Yang CY, Chang PW, Hsu WH, Chang HC, Chen CL, Lai CC, Chiu WT, Chen HC: Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene 2019, 38:4075-4094. 20. Xu J, Chang WH, Fong LWR, Weiss RH, Yu SL, Chen CH: Targeting the insulin-like growth factor-1 receptor in MTAP-deficient renal cell carcinoma. Signal Transduct Target Ther 2019, 4:2. 21. Su CY, Chang YC, Chan YC, Lin TC, Huang MS, Yang CJ, Hsiao M: MTAP is an independent prognosis marker and the concordant loss of MTAP and p16 expression predicts short survival in non-small cell lung cancer patients. Eur J Surg Oncol 2014, 40:1143-1150. 22. Woollard WJ, Kalaivani NP, Jones CL, Roper C, Tung L, Lee JJ, Thomas BR, Tosi I, Ferreira S, Beyers CZ, et al: Independent Loss of Methylthioadenosine Phosphorylase (MTAP) in Primary Cutaneous T-Cell Lymphoma. J Invest Dermatol 2016, 136:1238-1246. 23. Christopher SA, Diegelman P, Porter CW, Kruger WD: Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res 2002, 62:6639-6644. 24. Appleby TC, Erion MD, Ealick SE: The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Structure 1999, 7:629-641. 25. Strouhalova K, Prechova M, Gandalovicova A, Brabek J, Gregor M, Rosel D: Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel) 2020, 12. 26. Gary JD, Clarke S: RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 1998, 61:65-131. 27. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674. 28. Hellerbrand C, Muhlbauer M, Wallner S, Schuierer M, Behrmann I, Bataille F, Weiss T, Scholmerich J, Bosserhoff AK: Promoter-hypermethylation is causing functional relevant downregulation of methylthioadenosine phosphorylase (MTAP) expression in hepatocellular carcinoma. Carcinogenesis 2006, 27:64-72. 29. Bigaud E, Corrales FJ: Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease. Mol Cell Proteomics 2016, 15:1498-1510. 30. Lambert AW, Pattabiraman DR, Weinberg RA: Emerging Biological Principles of Metastasis. Cell 2017, 168:670-691. 31. Xiao W, Chen X, Liu L, Shu Y, Zhang M, Zhong Y: Role of protein arginine methyltransferase 5 in human cancers. Biomed Pharmacother 2019, 114:108790. 32. Jing P, Zhao N, Ye M, Zhang Y, Zhang Z, Sun J, Wang Z, Zhang J, Gu Z: Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Lett 2018, 427:38-48. 33. Chen H, Lorton B, Gupta V, Shechter D: A TGFbeta-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene 2017, 36:373-386. 34. Campbell SL, Wellen KE: Metabolic Signaling to the Nucleus in Cancer. Mol Cell 2018, 71:398-408. 35. Wikoff WR, Grapov D, Fahrmann JF, DeFelice B, Rom WN, Pass HI, Kim K, Nguyen U, Taylor SL, Gandara DR, et al: Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev Res (Phila) 2015, 8:410-418. 36. Fahrmann JF, Grapov DD, Wanichthanarak K, DeFelice BC, Salemi MR, Rom WN, Gandara DR, Phinney BS, Fiehn O, Pass H, Miyamoto S: Integrated Metabolomics and Proteomics Highlight Altered Nicotinamide- and Polyamine Pathways in Lung Adenocarcinoma. Carcinogenesis 2017, 38:271-280. 37. Li X, Wang C, Jiang H, Luo C: A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat 2019, 29:97-114. 38. Inoue M, Okamoto K, Terashima A, Nitta T, Muro R, Negishi-Koga T, Kitamura T, Nakashima T, Takayanagi H: Arginine methylation controls the strength of gammac-family cytokine signaling in T cell maintenance. Nat Immunol 2018, 19:1265-1276. 39. Kim H, Kim H, Feng Y, Li Y, Tamiya H, Tocci S, Ronai ZA: PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Sci Transl Med 2020, 12. 40. Strobl CD, Schaffer S, Haug T, Volkl S, Peter K, Singer K, Bottcher M, Mougiakakos D, Mackensen A, Aigner M: Selective PRMT5 Inhibitors Suppress Human CD8(+) T Cells by Upregulation of p53 and Impairment of the AKT Pathway Similar to the Tumor Metabolite MTA. Mol Cancer Ther 2020, 19:409-419. 41. Snider NT, Omary MB: Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014, 15:163-177. 42. Bargagna-Mohan P, Hamza A, Kim YE, Khuan Abby Ho Y, Mor-Vaknin N, Wendschlag N, Liu J, Evans RM, Markovitz DM, Zhan CG, et al: The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 2007, 14:623-634. 43. Thaiparambil JT, Bender L, Ganesh T, Kline E, Patel P, Liu Y, Tighiouart M, Vertino PM, Harvey RD, Garcia A, Marcus AI: Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 2011, 129:2744-2755. 44. Hsu JH, Chang PM, Cheng TS, Kuo YL, Wu AT, Tran TH, Yang YH, Chen JM, Tsai YC, Chu YS, et al: Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2019, 11. 45. Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W: Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020, 173:113602. 46. Noh H, Yan J, Hong S, Kong LY, Gabrusiewicz K, Xia X, Heimberger AB, Li S: Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget 2016, 7:72021-72032. 47. Noh H, Zhao Q, Yan J, Kong LY, Gabrusiewicz K, Hong S, Xia X, Heimberger AB, Li S: Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Lett 2018, 433:176-185. 48. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman MJ, Kopetz S, Ellis LM, Meng QH, Li S: Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res 2015, 21:899-906. 49. Li H, Meng QH, Noh H, Batth IS, Somaiah N, Torres KE, Xia X, Wang R, Li S: Detection of circulating tumor cells from cryopreserved human sarcoma peripheral blood mononuclear cells. Cancer Lett 2017, 403:216-223. 50. Batth IS, Dao L, Satelli A, Mitra A, Yi S, Noh H, Li H, Brownlee Z, Zhou S, Bond J, et al: Cell surface vimentin-positive circulating tumor cell-based relapse prediction in a long-term longitudinal study of postremission neuroblastoma patients. Int J Cancer 2020. 51. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. CA Cancer J Clin 2018, 68:7-30. 52. Joosten SC, Hamming L, Soetekouw PM, Aarts MJ, Veeck J, van Engeland M, Tjan-Heijnen VC: Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim Biophys Acta 2015, 1855:1-16. 53. Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Burattini L, Zoccoli A, Berardi R, Santoni G, Tonini G, et al: Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophys Acta 2014, 1845:221-231. 54. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, Ding Z, Tannir N, Wood CG, Matin SF, et al: Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 2016, 35:2687-2697. 55. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ: Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007, 26:1932-1940. 56. Tracz AF, Szczylik C, Porta C, Czarnecka AM: Insulin-like growth factor-1 signaling in renal cell carcinoma. BMC Cancer 2016, 16:453. 57. Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, Ye J, Wei Q, Wang J, Zhao L, Luu HH: Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2015, 2:13-25. 58. Ciuleanu TE, Ahmed S, Kim JH, Mezger J, Park K, Thomas M, Chen J, Poondru S, VanTornout JM, Whitcomb D, Blackhall F: Randomised Phase 2 study of maintenance linsitinib (OSI-906) in combination with erlotinib compared with placebo plus erlotinib after platinum-based chemotherapy in patients with advanced non-small cell lung cancer. Br J Cancer 2017, 117:757-766. 59. Barata P, Cooney M, Tyler A, Wright J, Dreicer R, Garcia JA: A phase 2 study of OSI-906 (linsitinib, an insulin-like growth factor receptor-1 inhibitor) in patients with asymptomatic or mildly symptomatic (non-opioid requiring) metastatic castrate resistant prostate cancer (CRPC). Invest New Drugs 2018, 36:451-457. 60. Oza A, Kaye S, Van Tornout J, Sessa C, Gore M, Naumann RW, Hirte H, Colombo N, Chen J, Gorla S, et al: Phase 2 study evaluating intermittent and continuous linsitinib and weekly paclitaxel in patients with recurrent platinum resistant ovarian epithelial cancer. Gynecol Oncol 2018, 149:275-282. 61. Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, O'Connor M, Pirritt C, Sun Y, Yao Y, et al: Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem 2009, 1:1153-1171. 62. Coller HA: Is cancer a metabolic disease? Am J Pathol 2014, 184:4-17. 63. Wettersten HI, Hakimi AA, Morin D, Bianchi C, Johnstone ME, Donohoe DR, Trott JF, Aboud OA, Stirdivant S, Neri B, et al: Grade-Dependent Metabolic Reprogramming in Kidney Cancer Revealed by Combined Proteomics and Metabolomics Analysis. Cancer Res 2015, 75:2541-2552. 64. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, Aksoy BA, Liu EM, Shen R, Lee W, et al: An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 2016, 29:104-116. 65. Avila MA, Garcia-Trevijano ER, Lu SC, Corrales FJ, Mato JM: Methylthioadenosine. Int J Biochem Cell Biol 2004, 36:2125-2130. 66. Hustinx SR, Hruban RH, Leoni LM, Iacobuzio-Donahue C, Cameron JL, Yeo CJ, Brown PN, Argani P, Ashfaq R, Fukushima N, et al: Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: a potential new target for therapy. Cancer Biol Ther 2005, 4:83-86. 67. Basu I, Locker J, Cassera MB, Belbin TJ, Merino EF, Dong X, Hemeon I, Evans GB, Guha C, Schramm VL: Growth and metastases of human lung cancer are inhibited in mouse xenografts by a transition state analogue of 5'-methylthioadenosine phosphorylase. J Biol Chem 2011, 286:4902-4911. 68. Nobori T, Karras JG, Della Ragione F, Waltz TA, Chen PP, Carson DA: Absence of methylthioadenosine phosphorylase in human gliomas. Cancer Res 1991, 51:3193-3197. 69. Kirovski G, Stevens AP, Czech B, Dettmer K, Weiss TS, Wild P, Hartmann A, Bosserhoff AK, Oefner PJ, Hellerbrand C: Down-regulation of methylthioadenosine phosphorylase (MTAP) induces progression of hepatocellular carcinoma via accumulation of 5'-deoxy-5'-methylthioadenosine (MTA). Am J Pathol 2011, 178:1145-1152. 70. Gambichler T, Scola N, Bechara FG: Significantly decreased methylthioadenosine phosphorylase expression in malignant melanoma. Am J Dermatopathol 2012, 34:777-779. 71. Marce S, Balague O, Colomo L, Martinez A, Holler S, Villamor N, Bosch F, Ott G, Rosenwald A, Leoni L, et al: Lack of methylthioadenosine phosphorylase expression in mantle cell lymphoma is associated with shorter survival: implications for a potential targeted therapy. Clin Cancer Res 2006, 12:3754-3761. 72. Basu I, Cordovano G, Das I, Belbin TJ, Guha C, Schramm VL: A transition state analogue of 5'-methylthioadenosine phosphorylase induces apoptosis in head and neck cancers. J Biol Chem 2007, 282:21477-21486. 73. Chattopadhyay S, Zhao R, Tsai E, Schramm VL, Goldman ID: The effect of a novel transition state inhibitor of methylthioadenosine phosphorylase on pemetrexed activity. Mol Cancer Ther 2006, 5:2549-2555. 74. Williams-Ashman HG, Seidenfeld J, Galletti P: Trends in the biochemical pharmacology of 5'-deoxy-5'-methylthioadenosine. Biochem Pharmacol 1982, 31:277-288. 75. Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, David M: Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 2001, 104:731-741. 76. Biggar KK, Li SS: Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 2015, 16:5-17. 77. Boriack-Sjodin PA, Swinger KK: Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. Biochemistry 2016, 55:1557-1569. 78. Epstein DM, Buck E: Old dog, new tricks: extracellular domain arginine methylation regulates EGFR function. J Clin Invest 2015, 125:4320-4322. 79. Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, et al: Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 2011, 13:174-181. 80. Chen M, Qu X, Zhang Z, Wu H, Qin X, Li F, Liu Z, Tian L, Miao J, Shu W: Cross-talk between Arg methylation and Ser phosphorylation modulates apoptosis signal-regulating kinase 1 activation in endothelial cells. Mol Biol Cell 2016, 27:1358-1366. 81. Illei PB, Rusch VW, Zakowski MF, Ladanyi M: Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 2003, 9:2108-2113. 82. Powell EL, Leoni LM, Canto MI, Forastiere AA, Iocobuzio-Donahue CA, Wang JS, Maitra A, Montgomery E: Concordant loss of MTAP and p16/CDKN2A expression in gastroesophageal carcinogenesis: evidence of homozygous deletion in esophageal noninvasive precursor lesions and therapeutic implications. Am J Surg Pathol 2005, 29:1497-1504. 83. LaPak KM, Burd CE: The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res 2014, 12:167-183. 84. De Braekeleer M, Douet-Guilbert N, De Braekeleer E: Prognostic impact of p15 gene aberrations in acute leukemia. Leuk Lymphoma 2017, 58:257-265. 85. Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D: Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory. Clin Chem 2017, 63:1812-1820. 86. Stevens AP, Spangler B, Wallner S, Kreutz M, Dettmer K, Oefner PJ, Bosserhoff AK: Direct and tumor microenvironment mediated influences of 5'-deoxy-5'-(methylthio)adenosine on tumor progression of malignant melanoma. J Cell Biochem 2009, 106:210-219. 87. Henrich FC, Singer K, Poller K, Bernhardt L, Strobl CD, Limm K, Ritter AP, Gottfried E, Volkl S, Jacobs B, et al: Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells. Oncoimmunology 2016, 5:e1184802. 88. Liao HW, Hsu JM, Xia W, Wang HL, Wang YN, Chang WC, Arold ST, Chou CK, Tsou PH, Yamaguchi H, et al: PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. J Clin Invest 2015, 125:4529-4543. 89. Iams WT, Lovly CM: Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin Cancer Res 2015, 21:4270-4277. 90. Tang B, Testa JR, Kruger WD: Increasing the therapeutic index of 5-fluorouracil and 6-thioguanine by targeting loss of MTAP in tumor cells. Cancer Biol Ther 2012, 13:1082-1090. 91. Tang B, Lee HO, An SS, Cai KQ, Kruger WD: Specific targeting of MTAP-deleted tumors with a combination of 2'-fluoroadenine and 5'-methylthioadenosine. Cancer Res 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80353-
dc.description.abstract癌症是全球死亡的主要原因,儘管多年來在早期檢測(例如低劑量計算機斷層掃描)和抗腫瘤治療(例如靶向治療和免疫治療)方面取得了進展。肺癌是癌症相關死亡的最常見原因,而腎細胞癌是最常見的腎癌類型,其治療選擇非常有限。降低癌症高死亡率的主要障礙包括癌轉移和抗藥性,此突顯了未滿足的臨床需求:揭示異常基因表達和路徑調節之致癌信號的癌症進程機制,並發現可用於預測患者預後的潛在生物標誌。我們先前建立了一系列具有不同程度侵襲性和惡性程度的肺癌細胞株,並確定甲基硫腺苷磷酸化酶基因在惡性癌細胞中被深度刪除。甲基硫腺苷磷酸化酶是多胺、蛋氨酸和腺嘌呤代謝途徑的調節者,也是目前唯一已知負責催化甲基硫腺苷的酶蛋白。大約百分之十五的肺癌患者攜帶甲基硫腺苷磷酸化酶基因缺失。在對腎細胞癌患者的代謝組學綜合分析中,甲基硫腺苷隨著分期進展顯著升高,顯示在腎細胞癌中亦存在功能失調的甲基硫腺苷磷酸化酶。在我們的研究中,我們發現甲基硫腺苷磷酸化酶負向調節肺癌和腎細胞癌細胞的遷移、侵襲、轉移和腫瘤發生的能力。此外,甲基硫腺苷磷酸化酶在許多肺癌細胞株和高度惡性分化的腎細胞癌腫瘤組織中下調,且甲基硫腺苷磷酸化酶的低表達與較差的總體生存率相關。儘管有上述發現,甲基硫腺苷磷酸化酶缺失的潛在機制仍有待確定。最近的研究已顯示了甲基硫腺苷磷酸化酶在新陳代謝之外的作用。甲基硫腺苷磷酸化酶可藉由癌細胞中積累的甲基硫腺苷去抑制蛋白精氨酸甲基轉移酶 5的催化活性而調節蛋白精氨酸二甲基化。在我們所建立的甲基硫腺苷磷酸化酶剔除肺癌細胞和腎細胞癌細胞中,其由蛋白精氨酸甲基轉移酶 5調控的對稱精氨酸二甲基化水平是減少的,促使我們探索對稱精氨酸二甲基化對甲基硫腺苷磷酸化酶所調控之訊息傳遞路徑的貢獻。在第一部分的肺癌研究中,我們進行了甲基化蛋白質體學篩選,並揭示波形蛋白是蛋白精氨酸甲基轉移酶 5的新受質,並且因甲基硫腺苷磷酸化酶缺失而被剝奪了對稱二甲基化。此外,我們提出證明了對稱二甲基化對波形蛋白之聚合產生微不足道的影響,但通過泛素化和蛋白酶體降解下調波形蛋白的豐度。因此,在甲基硫腺苷磷酸化酶缺失細胞中,由低甲基化且穩定的波形蛋白驅動癌症惡性。為了將科學發現轉化為衛生介入措施,我們通過蛋白質基因體學的篩查和免疫組織化學染色進一步顯示了甲基硫腺苷磷酸化酶∕蛋白精氨酸甲基轉移酶 5和波形蛋白之間的負相關,證實了在肺癌中抗轉移性甲基硫腺苷磷酸化酶的新機制。在第二部分的腎細胞癌研究,我們注意到甲基硫腺苷磷酸化酶參與調控蛋白質的甲基化-磷酸化串擾,因此我們進行了人類受體酪胺酸激酶磷酸化蛋白晶片的偵測。甲基硫腺苷磷酸化酶表現量的缺乏激活了胰島素樣生長因子1受體的活性,從而促進腎細胞癌細胞的惡性特性。為了概念驗證,我們進一步證明胰島素樣生長因子1受體的選擇性抑製劑Linsitinib可有效抑制甲基硫腺苷磷酸化酶缺失的腎細胞癌中的胰島素樣生長因子1受體之訊息傳遞並逆轉其致癌表型。總之,我們證實了甲基硫腺苷磷酸化酶缺失所驅動之肺癌和腎細胞癌轉移和進程的機制,並提供了有潛力的治療策略來解決對抗甲基硫腺苷磷酸化酶缺失癌症的未滿足需求。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:05:00Z (GMT). No. of bitstreams: 1
U0001-1601202220561200.pdf: 6097339 bytes, checksum: 042af8a263cfbdda923f3e03dbf98a49 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書............................................................................................................i 致謝...................................................................................................................................ii 中文摘要..........................................................................................................................iii Abstract............................................................................................................................v Contents..........................................................................................................................vii List of Figures..................................................................................................................x List of Tables................................................................................................................xiii Chapter I: Repression of PRMT5-mediated dimethylation stabilizes vimentin and promotes metastasis in MTAP-loss lung cancer...................................................1 A. Abstract..................................................................................................................2 B. Introduction............................................................................................................3 C. Materials and Methods...........................................................................................5 1. Reagents and antibodies..................................................................................5 2. Plasmid constructs and primers.......................................................................5 3. Cell culture and transfection............................................................................7 4. Real-time quantitative RT-PCR.......................................................................8 5. Western blot and immunoprecipitation assays................................................9 6. In vivo animal experiments............................................................................10 7. Identification of dimethyl-proteins and sites by LC-MS/MS analysis...........10 8. In vitro methyltransferase assay.....................................................................12 9. Patient tumor specimens................................................................................12 10. Immunohistochemical staining....................................................................13 11. Immunofluorescent staining........................................................................14 12. Invasion and single-cell tracking migration assays......................................14 13. Anchorage-independent colony formation..................................................15 14. Fractionation of soluble and insoluble vimentin.........................................15 15. Statistical analysis........................................................................................15 D. Results..................................................................................................................17 1. MTAP deficiency confers the tumorigenesis and metastatic ability of lung adenocarcinoma.............................................................................................17 2. MTAP deletion inhibits PRMT5-mediated sDMA of vimentin to promote cancer invasion..............................................................................................18 3. Decreased sDMA levels on vimentin enhances cancer cell motility.............21 4. PRMT5-mediated sDMA negatively regulates vimentin protein abundance......................................................................................................23 5. PRMT5-mediated sDMA facilitates proteasomal degradation of vimentin...........................................................................................................24 6. MTAP/PRMT5 axis is inversely associated with vimentin protein level in lung cancer.....................................................................................................25 E. Discussion............................................................................................................27 F. Figures..................................................................................................................33 G. Tables...................................................................................................................61 Chapter II: Targeting the insulin-like growth factor-1 receptor in MTAP-deficient renal cell carcinoma...............................................................................................79 A. Abstract................................................................................................................80 B. Introduction..........................................................................................................81 C. Materials and Methods.........................................................................................83 1. Reagents and antibodies................................................................................83 2. Plasmid constructs and primers.....................................................................83 3. Cell culture and transfection..........................................................................83 4. Western blot and immunoprecipitation assays..............................................84 5. Patient tumor specimens................................................................................84 6. Immunohistochemical staining......................................................................85 7. Human phospho-receptor tyrosine kinase (RTK) array.................................85 8. Scratch/wound-healing assay.........................................................................85 9. Invasion assay................................................................................................85 10. Cell viability and colony formation assays..................................................85 11. Statistical analysis........................................................................................86 D. Results..................................................................................................................87 1. MTAP loss and/or downregulation contributes to RCC progression............87 2. MTAP reverses epithelial-mesenchymal transition and inhibits cancer migration/invasion.........................................................................................88 3. MTAP modulates the crosstalk between protein arginine methylation and tyrosine phosphorylation................................................................................89 4. Loss of MTAP expression activates IGF1R and its downstream signaling.........................................................................................................90 5. MTAP deletion-mediated activation of IGF1R signaling is repressed by linsitinib.........................................................................................................91 6. IGF1R inhibition attenuates the malignant phenotypes of MTAP-deficient RCC...............................................................................................................92 E. Discussion............................................................................................................94 F. Figures................................................................................................................100 G. Tables.................................................................................................................115 References.....................................................................................................................116 Appendix.......................................................................................................................126
dc.language.isoen
dc.subject轉譯後修飾zh_TW
dc.subject腎細胞癌zh_TW
dc.subject肺癌zh_TW
dc.subject甲基化蛋白質體學zh_TW
dc.subject胰島素樣生長因子1受體zh_TW
dc.subject波型蛋白zh_TW
dc.subject甲基硫腺苷磷酸化酶zh_TW
dc.subjectrenal cell carcinomaen
dc.subjectlung canceren
dc.subjectpost-translational modificationsen
dc.subjectMTAPen
dc.subjectvimentinen
dc.subjectIGF1Ren
dc.subjectmethylproteomeen
dc.title甲基硫腺苷磷酸化酶在癌轉移與腫瘤進程之抑癌機制zh_TW
dc.titleSuppressive Mechanisms of Methylthioadenosine Phosphorylase in Cancer Metastasis and Progressionen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0002-8027-302X
dc.contributor.coadvisor俞松良(Sung-Liang Yu)
dc.contributor.oralexamcommittee李財坤(Shih-Fang Chen),林敬哲(Shou-Suei Hung),徐立中,陳瑞華,楊慕華
dc.subject.keyword肺癌,腎細胞癌,轉譯後修飾,甲基硫腺苷磷酸化酶,波型蛋白,胰島素樣生長因子1受體,甲基化蛋白質體學,zh_TW
dc.subject.keywordlung cancer,renal cell carcinoma,post-translational modifications,MTAP,vimentin,IGF1R,methylproteome,en
dc.relation.page126
dc.identifier.doi10.6342/NTU202200076
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-01-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1601202220561200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved