請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80344完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡力凱(Li-Kai Tsai) | |
| dc.contributor.author | Hsin-Hsi Tsai | en |
| dc.contributor.author | 蔡欣熹 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:04:50Z | - |
| dc.date.available | 2021-07-07 | |
| dc.date.available | 2022-11-24T03:04:50Z | - |
| dc.date.copyright | 2021-07-07 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-22 | |
| dc.identifier.citation | 1. Adams HP, Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993;24:35-41. 2. Arbel-Ornath M, Hudry E, Eikermann-Haerter K, et al. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. Acta Neuropathol 2013;126:353-364. 3. Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol 2011;69:320-327. 4. Ball KK, Cruz NF, Mrak RE, Dienel GA. Trafficking of glucose, lactate, and amyloid-beta from the inferior colliculus through perivascular routes. J Cereb Blood Flow Metab 2010;30:162-176. 5. Banerjee G, Adams ME, Jaunmuktane Z, et al. Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Ann Neurol 2019;85:284-290. 6. Banerjee G, Kim HJ, Fox Z, et al. MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden. Brain 2017;140:1107-1116. 7. Baron JC, Farid K, Dolan E, et al. Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 2014;34:753-758. 8. Begley DJ. Brain superhighways. Sci Transl Med 2012;4:147fs129. 9. Blanc C, Viguier A, Calviere L, et al. Underlying Small Vessel Disease Associated With Mixed Cerebral Microbleeds. Front Neurol 2019;10:1126. 10. Braak H, Braak E, Bohl J, Lang W. Alzheimer's disease: amyloid plaques in the cerebellum. J Neurol Sci 1989;93:277-287. 11. Brown R, Benveniste H, Black SE, et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018;114:1462-1473. 12. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 1999;96:14088-14093. 13. Cappellari M, Zivelonghi C, Moretto G, et al. The etiologic subtype of intracerebral hemorrhage may influence the risk of significant hematoma expansion. J Neurol Sci 2015;359:293-297. 14. Carnevale D, Mascio G, D'Andrea I, et al. Hypertension induces brain beta-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension 2012;60:188-197. 15. Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings. Circulation 1987;75:565-572. 16. Charidimou A, Baron JC, Werring DJ. Transient focal neurological episodes, cerebral amyloid angiopathy, and intracerebral hemorrhage risk: looking beyond TIAs. Int J Stroke 2013;8:105-108. 17. Charidimou A, Boulouis G, Gurol ME, et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 2017. 18. Charidimou A, Boulouis G, Gurol ME, et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 2017;140:1829-1850. 19. Charidimou A, Boulouis G, Haley K, et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016;86:505-511. 20. Charidimou A, Boulouis G, Pasi M, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2017;88:1157-1164. 21. Charidimou A, Boulouis G, Roongpiboonsopit D, et al. Cortical superficial siderosis multifocality in cerebral amyloid angiopathy: A prospective study. Neurology 2017;89:2128-2135. 22. Charidimou A, Farid K, Baron JC. Amyloid-PET in sporadic cerebral amyloid angiopathy: A diagnostic accuracy meta-analysis. Neurology 2017;89:1490-1498. 23. Charidimou A, Farid K, Tsai HH, Tsai LK, Yen RF, Baron JC. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance. J Neurol Neurosurg Psychiatry 2018;89:410-417. 24. Charidimou A, Frosch MP, Salman RA, et al. Advancing diagnostic criteria for sporadic cerebral amyloid angiopathy: Study protocol for a multicenter MRI-pathology validation of Boston criteria v2.0. Int J Stroke 2019:1747493019855888. 25. Charidimou A, Hong YT, Jager HR, et al. White matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? Stroke 2015;46:1707-1709. 26. Charidimou A, Linn J, Vernooij MW, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain 2015;138:2126-2139. 27. Charidimou A, Meegahage R, Fox Z, et al. Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRI cohort study. J Neurol Neurosurg Psychiatry 2013;84:624-629. 28. Charidimou A, Peeters A, Fox Z, et al. Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis. Stroke 2012;43:2324-2330. 29. Charidimou A, Peeters AP, Jager R, et al. Cortical superficial siderosis and intracerebral hemorrhage risk in cerebral amyloid angiopathy. Neurology 2013;81:1666-1673. 30. Charidimou A, Perosa V, Frosch MP, Scherlek AA, Greenberg SM, van Veluw SJ. Neuropathological correlates of cortical superficial siderosis in cerebral amyloid angiopathy. Brain 2020;143:3343-3351. 31. Charidimou A, Zonneveld HI, Shams S, et al. APOE and cortical superficial siderosis in CAA: Meta-analysis and potential mechanisms. Neurology 2019;93:e358-e371. 32. Chen SJ, Tsai HH, Tsai LK, et al. Advances in cerebral amyloid angiopathy imaging. Ther Adv Neurol Disord 2019;12:1756286419844113. 33. Chen W, Song X, Zhang Y, Alzheimer's Disease Neuroimaging I. Assessment of the Virchow-Robin Spaces in Alzheimer disease, mild cognitive impairment, and normal aging, using high-field MR imaging. AJNR Am J Neuroradiol 2011;32:1490-1495. 34. Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988-2003. 35. Cuadrado-Godia E, Dwivedi P, Sharma S, et al. Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. J Stroke 2018;20:302-320. 36. Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 2018;560:185-191. 37. das Neves SP, Delivanoglou N, Da Mesquita S. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front Pharmacol 2021;12:655052. 38. Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 2004;279:20296-20306. 39. Dellu F, Contarino A, Simon H, Koob GF, Gold LH. Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 2000;73:31-48. 40. Dierksen GA, Skehan ME, Khan MA, et al. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann Neurol 2010;68:545-548. 41. Dinsdale HB. Spontaneous Hemorrhage in the Posterior Fossa.A Study of Primary Cerebellar and Pontine Hemorrhages with Observations on Their Pathogenesis. Arch Neurol 1964;10:200-217. 42. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010;41:450-454. 43. Duering M, Csanadi E, Gesierich B, et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain 2013;136:2717-2726. 44. Dumas A, Dierksen GA, Gurol ME, et al. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann Neurol 2012;72:76-81. 45. Edison P, Hinz R, Ramlackhansingh A, et al. Can target-to-pons ratio be used as a reliable method for the analysis of [11C]PIB brain scans? Neuroimage 2012;60:1716-1723. 46. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep 2018;8:7194. 47. Esquerda-Canals G, Montoliu-Gaya L, Guell-Bosch J, Villegas S. Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2017;57:1171-1183. 48. Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update. Neuroimage Clin 2017;15:247-263. 49. Farid K, Hong YT, Aigbirhio FI, et al. Early-Phase 11C-PiB PET in Amyloid Angiopathy-Related Symptomatic Cerebral Hemorrhage: Potential Diagnostic Value? PloS one 2015;10:e0139926. 50. Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637-642. 51. Fisher CM. Lacunar strokes and infarcts: a review. Neurology 1982;32:871-876. 52. Fotiadis P, van Rooden S, van der Grond J, et al. Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study. Lancet Neurol 2016;15:811-819. 53. Ghetti B, Piccardo P, Spillantini MG, et al. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci U S A 1996;93:744-748. 54. Goos JDC, Kester MI, Barkhof F, et al. Patients With Alzheimer Disease With Multiple Microbleeds. Stroke 2009;40:3455-3460. 55. Gottesman RF, Schneider AL, Zhou Y, et al. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA 2017;317:1443-1450. 56. Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology 2021. 57. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 2020;16:30-42. 58. Greenberg SM, Briggs ME, Hyman BT, et al. Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 1996;27:1333-1337. 59. Greenberg SM, Charidimou A. Diagnosis of Cerebral Amyloid Angiopathy: Evolution of the Boston Criteria. Stroke 2018;49:491-497. 60. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165-174. 61. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral Microbleeds: A Field Guide to their Detection and Interpretation. The Lancet Neurology 2009;8:165-174. 62. Gregoire SM, Chaudhary UJ, Brown MM, et al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759-1766. 63. Gupta A, Iadecola C. Impaired Abeta clearance: a potential link between atherosclerosis and Alzheimer's disease. Front Aging Neurosci 2015;7:115. 64. Gurol ME. Molecular Neuroimaging in Vascular Cognitive Impairment. Stroke 2016;47:1146-1152. 65. Gurol ME. Nonpharmacological Management of Atrial Fibrillation in Patients at High Intracranial Hemorrhage Risk. Stroke 2018;49:247-254. 66. Gurol ME, Becker JA, Fotiadis P, et al. Florbetapir-PET to diagnose cerebral amyloid angiopathy: A prospective study. Neurology 2016;87:2043-2049. 67. Gurol ME, Dierksen G, Betensky R, et al. Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 2012;79:320-326. 68. Gurol ME, Greenberg SM. A physiologic biomarker for cerebral amyloid angiopathy. Neurology 2013;81:1650-1651. 69. Gurol ME, Irizarry MC, Smith EE, et al. Plasma beta-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy. Neurology 2006;66:23-29. 70. Gurol ME, Viswanathan A, Gidicsin C, et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. Ann Neurol 2013;73:529-536. 71. Hawkes CA, Hartig W, Kacza J, et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 2011;121:431-443. 72. Hawkes CA, Jayakody N, Johnston DA, Bechmann I, Carare RO. Failure of perivascular drainage of beta-amyloid in cerebral amyloid angiopathy. Brain Pathol 2014;24:396-403. 73. Hawkes CA, McLaurin J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 2009;106:1261-1266. 74. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JA, Carare RO. Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon4 allele. PLoS One 2012;7:e41636. 75. Hilal S, Mok V, Youn YC, Wong A, Ikram MK, Chen CL. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry 2017;88:669-674. 76. Iorio M, Spalletta G, Chiapponi C, et al. White matter hyperintensities segmentation: a new semi-automated method. Front Aging Neurosci 2013;5:76. 77. Itoh Y, Yamada M, Hayakawa M, Otomo E, Miyatake T. Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J Neurol Sci 1993;116:135-141. 78. Jakel L, Van Nostrand WE, Nicoll JAR, Werring DJ, Verbeek MM. Animal models of cerebral amyloid angiopathy. Clin Sci (Lond) 2017;131:2469-2488. 79. Jaunmuktane Z, Mead S, Ellis M, et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 2015;525:247-250. 80. Johnson KA, Gregas M, Becker JA, et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007;62:229-234. 81. Keable A, Fenna K, Yuen HM, et al. Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochimica et biophysica acta 2016;1862:1037-1046. 82. Kim HJ, Cho H, Werring DJ, et al. 18F-AV-1451 PET Imaging in Three Patients with Probable Cerebral Amyloid Angiopathy. J Alzheimers Dis 2017;57:711-716. 83. Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry 2008;64:273-280. 84. Kinnecom C, Lev MH, Wendell L, et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology 2007;68:1411-1416. 85. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537-539. 86. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014;76:845-861. 87. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics 2007;27:1071-1086. 88. Lau KK, Li L, Schulz U, et al. Total small vessel disease score and risk of recurrent stroke: Validation in 2 large cohorts. Neurology 2017;88:2260-2267. 89. Lee SH, Park JM, Kwon SJ, et al. Left ventricular hypertrophy is associated with cerebral microbleeds in hypertensive patients. Neurology 2004;63:16-21. 90. Lee SH, Ryu WS, Roh JK. Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology 2009;72:171-176. 91. Lei C, Wu B, Liu M, Tan G, Zeng Q. Pathogenesis and Subtype of Intracerebral Hemorrhage (ICH) and ICH Score Determines Prognosis. Curr Neurovasc Res 2016;13:244-248. 92. Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy(CME). Neurology 2010;74:1346-1350. 93. Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010;74:1346-1350. 94. Lou M, Al-Hazzani A, Goddeau RP, Jr., Novak V, Selim M. Relationship between white-matter hyperintensities and hematoma volume and growth in patients with intracerebral hemorrhage. Stroke 2010;41:34-40. 95. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017;127:3210-3219. 96. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337-341. 97. Ly JV, Donnan GA, Villemagne VL, et al. 11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage. Neurology 2010;74:487-493. 98. Ly JV, Singhal S, Rowe CC, Kempster P, Bower S, Phan TG. Convexity Subarachnoid Hemorrhage with PiB Positive Pet Scans: Clinical Features and Prognosis. J Neuroimaging 2015;25:420-429. 99. Marti-Fabregas J, Prats-Sanchez L, Martinez-Domeno A, et al. The H-ATOMIC Criteria for the Etiologic Classification of Patients with Intracerebral Hemorrhage. PLoS One 2016;11:e0156992. 100. Martinez-Ramirez S, Greenberg SM, Viswanathan A. Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimer's Research Therapy 2014;6:33. 101. Martinez-Ramirez S, Romero JR, Shoamanesh A, et al. Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. Alzheimers Dement 2015;11:1480-1488. 102. Martinez-Ramirez S, van Rooden S, Charidimou A, et al. Perivascular Spaces Volume in Sporadic and Hereditary (Dutch-Type) Cerebral Amyloid Angiopathy. Stroke 2018;49:1913-1919. 103. Meretoja A, Strbian D, Putaala J, et al. SMASH-U: a proposal for etiologic classification of intracerebral hemorrhage. Stroke 2012;43:2592-2597. 104. Miller DL, Papayannopoulos IA, Styles J, et al. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch Biochem Biophys 1993;301:41-52. 105. Mok V, Srikanth V, Xiong Y, et al. Race-ethnicity and cerebral small vessel disease--comparison between Chinese and White populations. Int J Stroke 2014;9 Suppl A100:36-42. 106. Na HK, Park JH, Kim JH, et al. Cortical superficial siderosis: a marker of vascular amyloid in patients with cognitive impairment. Neurology 2015;84:849-855. 107. Natte R, Maat-Schieman ML, Haan J, Bornebroek M, Roos RA, van Duinen SG. Dementia in hereditary cerebral hemorrhage with amyloidosis-Dutch type is associated with cerebral amyloid angiopathy but is independent of plaques and neurofibrillary tangles. Ann Neurol 2001;50:765-772. 108. Norrmen C, Tammela T, Petrova TV, Alitalo K. Biological basis of therapeutic lymphangiogenesis. Circulation 2011;123:1335-1351. 109. Oshima K, Uchikado H, Dickson DW. Perivascular neuritic dystrophy associated with cerebral amyloid angiopathy in Alzheimer's disease. Int J Clin Exp Pathol 2008;1:403-408. 110. Park JH, Seo SW, Kim C, et al. Pathogenesis of cerebral microbleeds: In vivo imaging of amyloid and subcortical ischemic small vessel disease in 226 individuals with cognitive impairment. Ann Neurol 2013;73:584-593. 111. Pasi M, Boulouis G, Fotiadis P, et al. Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology 2017;88:2162-2168. 112. Pasi M, Charidimou A, Boulouis G, et al. Mixed-location cerebral hemorrhage/microbleeds: Underlying microangiopathy and recurrence risk. Neurology 2018;90:e119-e126. 113. Pasi M, Marini S, Morotti A, et al. Cerebellar Hematoma Location: Implications for the Underlying Microangiopathy. Stroke 2018;49:207-210. 114. Pasi M, Pongpitakmetha T, Charidimou A, et al. Cerebellar Microbleed Distribution Patterns and Cerebral Amyloid Angiopathy. Stroke 2019:STROKEAHA119024843. 115. Pasi M, Pongpitakmetha T, Charidimou A, et al. Cerebellar Microbleed Distribution Patterns and Cerebral Amyloid Angiopathy. Stroke 2019;50:1727-1733. 116. Peca S, McCreary CR, Donaldson E, et al. Neurovascular decoupling is associated with severity of cerebral amyloid angiopathy. Neurology 2013;81:1659-1665. 117. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol Dis 2016;93:215-225. 118. Pichler M, Vemuri P, Rabinstein AA, et al. Prevalence and Natural History of Superficial Siderosis: A Population-Based Study. Stroke 2017;48:3210-3214. 119. Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke 2010;41:S103-106. 120. Poels MMF, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function. Neurology 2012;78:326. 121. Potter GM, Doubal FN, Jackson CA, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke 2015;10:376-381. 122. Qiu C, Cotch MF, Sigurdsson S, et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology 2010;75:2221-2228. 123. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001;344:1450-1460. 124. Radu RA, Terecoasa EO, Bajenaru OA, Tiu C. Etiologic classification of ischemic stroke: Where do we stand? Clin Neurol Neurosurg 2017;159:93-106. 125. Rajamohamedsait HB, Sigurdsson EM. Histological staining of amyloid and pre-amyloid peptides and proteins in mouse tissue. Methods Mol Biol 2012;849:411-424. 126. Rannikmae K, Woodfield R, Anderson CS, et al. Reliability of intracerebral hemorrhage classification systems: A systematic review. Int J Stroke 2016;11:626-636. 127. Reijmer YD, Fotiadis P, Martinez-Ramirez S, et al. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 2015;138:179-188. 128. Reijmer YD, Fotiadis P, Riley GA, et al. Progression of Brain Network Alterations in Cerebral Amyloid Angiopathy. Stroke 2016;47:2470-2475. 129. Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 2016;36:40-54. 130. Renard D, Castelnovo G, Wacongne A, et al. Interest of CSF biomarker analysis in possible cerebral amyloid angiopathy cases defined by the modified Boston criteria. J Neurol 2012;259:2429-2433. 131. Ritter MA, Droste DW, Hegedus K, et al. Role of cerebral amyloid angiopathy in intracerebral hemorrhage in hypertensive patients. Neurology 2005;64:1233-1237. 132. Rodrigues MA, Samarasekera N, Lerpiniere C, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol 2018;17:232-240. 133. Roher AE, Lowenson JD, Clarke S, et al. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A 1993;90:10836-10840. 134. Rudie JD, Rauschecker AM, Nabavizadeh SA, Mohan S. Neuroimaging of Dilated Perivascular Spaces: From Benign and Pathologic Causes to Mimics. J Neuroimaging 2018;28:139-149. 135. Samarasekera N, Fonville A, Lerpiniere C, et al. Influence of intracerebral hemorrhage location on incidence, characteristics, and outcome: population-based study. Stroke 2015;46:361-368. 136. Samarasekera N, Rodrigues MA, Toh PS, Al-Shahi R. Imaging features of intracerebral hemorrhage with cerebral amyloid angiopathy: Systematic review and meta-analysis. PloS one 2017;12:e0180923. 137. Scheinin NM, Wikman K, Jula A, et al. Cortical (1)(1)C-PIB uptake is associated with age, APOE genotype, and gender in 'healthy aging'. J Alzheimers Dis 2014;41:193-202. 138. Smith EE, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Curr Atheroscler Rep 2003;5:260-266. 139. Smith EE, Gurol ME, Eng JA, et al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology 2004;63:1606-1612. 140. Smith EE, Nandigam KR, Chen YW, et al. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage. Stroke 2010;41:1933-1938. 141. Smith EE, Schneider JA, Wardlaw JM, Greenberg SM. Cerebral microinfarcts: the invisible lesions. Lancet Neurol 2012;11:272-282. 142. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 1949;37:161-186. 143. Song CJ, Kim JH, Kier EL, Bronen RA. MR imaging and histologic features of subinsular bright spots on T2-weighted MR images: Virchow-Robin spaces of the extreme capsule and insular cortex. Radiology 2000;214:671-677. 144. Song E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020;577:689-694. 145. Soo YO, Yang SR, Lam WW, et al. Risk vs benefit of anti-thrombotic therapy in ischaemic stroke patients with cerebral microbleeds. Journal of neurology 2008;255:1679-1686. 146. Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities in patients with Alzheimer's disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 2012;11:241-249. 147. Staekenborg SS, Koedam ELGE, Henneman WJP, et al. Progression of Mild Cognitive Impairment to Dementia. Stroke 2009;40:1269-1274. 148. Stover KR, Campbell MA, Van Winssen CM, Brown RE. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behav Brain Res 2015;289:29-38. 149. Sun BL, Wang LH, Yang T, et al. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Progress in neurobiology 2018;163-164:118-143. 150. Switzer AR, McCreary C, Batool S, et al. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy. Neuroimage Clin 2016;11:461-467. 151. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF. Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 1984;246:F835-844. 152. Takeuchi S, Takasato Y, Masaoka H, Hayakawa T, Yatsushige H, Sugawara T. Simultaneous multiple hypertensive intracranial hemorrhages. J Clin Neurosci 2011;18:1215-1218. 153. Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev 2019. 154. Tang YJ, Li Y, Wang S, Zhu MW, Sun YL, Zhao JZ. The incidence of cerebral amyloid angiopathy in surgically treated intracranial hemorrhage in the Chinese population. Neurosurg Rev 2013;36:533-539. 155. Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015;11:457-470. 156. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. Journal of neuropathology and experimental neurology 2003;62:1287-1301. 157. Thal DR, Ghebremedhin E, Rub U, Yamaguchi H, Del Tredici K, Braak H. Two types of sporadic cerebral amyloid angiopathy. Journal of neuropathology and experimental neurology 2002;61:282-293. 158. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002;58:1791-1800. 159. Thanprasertsuk S, Martinez-Ramirez S, Pontes-Neto OM, et al. Posterior white matter disease distribution as a predictor of amyloid angiopathy. Neurology 2014;83:794-800. 160. Thon JM, Gurol ME. Intracranial Hemorrhage Risk in the Era of Antithrombotic Therapies for Ischemic Stroke. Curr Treat Options Cardiovasc Med 2016;18:29. 161. Thygesen C, Ilkjaer L, Kempf SJ, et al. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1DeltaE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci 2018;12:397. 162. Tryputsen V, DiBernardo A, Samtani M, et al. Optimizing regions-of-interest composites for capturing treatment effects on brain amyloid in clinical trials. J Alzheimers Dis 2015;43:809-821. 163. Tsai CF, Anderson N, Thomas B, Sudlow CL. Comparing Risk Factor Profiles between Intracerebral Hemorrhage and Ischemic Stroke in Chinese and White Populations: Systematic Review and Meta-Analysis. PLoS One 2016;11:e0151743. 164. Tsai HH, Kim JS, Jouvent E, Gurol ME. Updates on Prevention of Hemorrhagic and Lacunar Strokes. J Stroke 2018;20:167-179. 165. Tsai HH, Pasi M, Tsai LK, et al. Microangiopathy underlying mixed-location intracerebral hemorrhages/microbleeds: A PiB-PET study. Neurology 2019. 166. Tsai HH, Pasi M, Tsai LK, et al. Microangiopathy underlying mixed-location intracerebral hemorrhages/microbleeds: A PiB-PET study. Neurology 2019;92:e774-e781. 167. Tsai HH, Tsai LK, Chen YF, et al. Correlation of Cerebral Microbleed Distribution to Amyloid Burden in Patients with Primary Intracerebral Hemorrhage. Sci Rep 2017;7:44715. 168. Tsivgoulis G, Zand R, Katsanos AH, et al. Risk of Symptomatic Intracerebral Hemorrhage After Intravenous Thrombolysis in Patients With Acute Ischemic Stroke and High Cerebral Microbleed Burden: A Meta-analysis. JAMA neurology 2016;73:675-683. 169. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010;9:167-176. 170. van den Brink H, Zwiers A, Switzer AR, et al. Cortical Microinfarcts on 3T Magnetic Resonance Imaging in Cerebral Amyloid Angiopathy. Stroke 2018;49:1899-1905. 171. van Etten ES, Auriel E, Haley KE, et al. Incidence of symptomatic hemorrhage in patients with lobar microbleeds. Stroke 2014;45:2280-2285. 172. van Etten ES, Kaushik K, van Zwet EW, et al. Sensitivity of the Edinburgh Criteria for Lobar Intracerebral Hemorrhage in Hereditary Cerebral Amyloid Angiopathy. Stroke 2020:STROKEAHA120031264. 173. van Rooden S, van der Grond J, van den Boom R, et al. Descriptive analysis of the Boston criteria applied to a Dutch-type cerebral amyloid angiopathy population. Stroke 2009;40:3022-3027. 174. van Veluw SJ, Charidimou A, van der Kouwe AJ, et al. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study. Brain 2016;139:3151-3162. 175. van Veluw SJ, Hou SS, Calvo-Rodriguez M, et al. Vasomotion as a Driving Force for Paravascular Clearance in the Awake Mouse Brain. Neuron 2020;105:549-561 e545. 176. van Veluw SJ, Kuijf HJ, Charidimou A, et al. Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy. Acta Neuropathol 2017;133:409-415. 177. van Veluw SJ, Shih AY, Smith EE, et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol 2017;16:730-740. 178. Van Vickle GD, Esh CL, Daugs ID, et al. Tg-SwDI transgenic mice exhibit novel alterations in AbetaPP processing, Abeta degradation, and resilient amyloid angiopathy. Am J Pathol 2008;173:483-493. 179. Verbeek MM, Kremer BP, Rikkert MO, Van Domburg PH, Skehan ME, Greenberg SM. Cerebrospinal fluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. Ann Neurol 2009;66:245-249. 180. Vidal R, Calero M, Piccardo P, et al. Senile dementia associated with amyloid beta protein angiopathy and tau perivascular pathology but not neuritic plaques in patients homozygous for the APOE-epsilon4 allele. Acta Neuropathol 2000;100:1-12. 181. Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18:311-324. 182. Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 1983;14:924-928. 183……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80344 | - |
| dc.description.abstract | 大腦類澱粉血管病變是一種β澱粉樣蛋白沈積在大腦皮質層和腦膜的小血管中引起的疾病,是自發性大葉型腦出血的主要病因。由於目前臨床治診斷方式侷限,對其致病機制也尚未了解,因此本研究包括三個具體目標,包括:(1)使用多重神經影像技術的方法研究大腦類澱粉血管病變的影像學特徵;(2)在同時患有大葉和深部出血(混合型腦出血)的患者中診斷大腦類澱粉血管病變;(3)建立血管間隙擴大與類澱粉血管病變之關聯性,並使用動物模型確定血管澱粉樣蛋白經由淋巴引流系統清除。 我們前瞻性地招募了症狀性腦出血的患者進行血液敏感性磁振造影和澱粉樣蛋白正子攝影檢查,以研究大腦類澱粉血管病變的影像學表現。我們發現,大腦澱粉樣血管病變不僅會導致大腦出血,也會導致小腦淺層微出血。我們同時建立了大腦類澱粉血管病變與腦葉裂隙性梗塞之間的關聯性,因此將此疾病的腦實質損傷從出血性表現擴展到了缺血性表現,這些影像標誌都可提高未來大腦類澱粉血管病變臨床診斷的敏感性。由於目前混合型腦出血的患者的致病原因還有所爭議,我們進一步利用澱粉樣蛋白正子攝影檢查,確認了他們主要的致病機轉是高血壓性小血管病變,而非大腦類澱粉血管病變。然而,一小部分混合型腦出血的病人同時患有兩種血管病變,而我們的兩年縱向追蹤資料證實了大腦類澱粉血管病變是其未來發生不良血管事件的危險因子,再次證明了在腦出血族群的患者中,診斷類澱粉血管病變的重要性。 為了進一步了解其致病機轉,我們在大腦類澱粉血管病變的病人中,研究磁振造影下可見的擴大血管周隙,發現其與澱粉樣蛋白沈積量增加有關。由於擴大的血管周隙暗示了大分子物質從大腦排除的淋巴引流功能受損,我們接著使用表現血管沈積澱粉樣蛋白的基因轉殖小鼠模型,破壞其腦膜淋巴引流途徑,發現會導致後續大腦的血管周隙擴大與血管澱粉樣蛋白沉積加劇,證實了腦膜淋巴引流是大腦類澱粉血管病變致病機轉的關鍵路徑,這也是未來發展大腦類澱粉血管病變治療策略的潛在標的。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:04:50Z (GMT). No. of bitstreams: 1 U0001-2006202116394300.pdf: 25298352 bytes, checksum: ffb18db22a821eb09820862752a2dcbe (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………… i 誌謝……………………………………………………………………………… ii 中文摘要………………………………………………………………………… iii 英文摘要………………………………………………………………………… iv 目錄……………………………………………………………………………… v 圖目錄…………………………………………………………………………… vii 表目錄…………………………………………………………………………… ix 第一章 緒論 (Introduction) ……………………………………………………………… 1 1.1 Cerebral amyloid angiopathy and the clinical diagnostic criteria ……………………. 1 1.2 Conventional neuroimaging characteristics in cerebral amyloid angiopathy ………… 4 1.3 Functional and molecular imaging in cerebral amyloid angiopathy …………………. 9 1.4 Cerebral amyloid angiopathy and microbleed distribution pattern …………………. 12 1.5 Pathogenic mechanisms in cerebral amyloid angiopathy ……………….…………… 17 1.6 Research hypothesis and specific aims ………….…………………………………. 21 第二章 研究方法與材料 (Method and Material) …………………………………………. 23 2.1 Clinical study ………………………………………………………………………... 23 2.2 Animal model ………………………………………………………………...……... 27 第三章 結果 (Results) ………………………………………………………………………… 30 3.1 Superficial cerebellar microbleeds and cerebral amyloid angiopathy ………………. 30 3.2 Lobar lacunes and cerebral amyloid angiopathy ……………………………………. 32 3.3 Mixed location intracerebral hemorrhages/microbleeds ……………………………. 34 3.4 Cerebral amyloid angiopathy and enlarged perivascular spaces ……………………. 38 3.5 Impaired meningeal lymphatic drainage function facilitates vascular amyloid deposition ……………………………………………………………...………………… 39 第四章 討論 (Discussion) …….……………………………………………………………… 40 4.1 Strictly superficial cerebellar microbleeds are associated with CAA ….…………… 40 4.2 CAA induces not only lobar hemorrhages but also lacunar infarcts ……….……… 43 4.3 Microangiopathy underlying Mixed-ICH is predominantly HTN-SVD .……………. 46 4.4 Coexisting CAA and HTN-SVD in Mixed-ICH predicts long-term vascular event .... 49 4.5 Centrum semiovale perivascular space is a severity marker in CAA and suggests possible pathogenic mechanism .……………………………………...………………… 52 4.6 Vascular amyloid clearance potentially via meningeal lymphatic drainage route …... 55 第五章 展望 (Contribution and Future Work) …………………………………………… 57 5.1 Expanding the radiological spectrum in cerebral amyloid angiopathy ……………… 57 5.2 Deciphering the causes of nontraumatic intracerebral hemorrhage .……...…………. 59 5.3 Clearance pathway as potential therapeutic targets in CAA .……………………… 62 5.4 Future work .………………………………………………………...……………… 64 第六章 簡述 (Summary) …………………………………………………………………… 66 第七章 參考文獻 (Reference) ……………………………………………………………… 75 第八章 附錄 (Appendix) ……………………………………………………………… 92 | |
| dc.language.iso | en | |
| dc.subject | 腦膜淋巴管 | zh_TW |
| dc.subject | 類澱粉血管病變 | zh_TW |
| dc.subject | 大腦小血管病變 | zh_TW |
| dc.subject | 腦出血 | zh_TW |
| dc.subject | 大腦血管周隙 | zh_TW |
| dc.subject | Intracerebral Hemorrhage | en |
| dc.subject | Meningeal Lymphatic Vessel | en |
| dc.subject | Brain Perivascular Space | en |
| dc.subject | Cerebral Amyloid Angiopathy | en |
| dc.subject | Cerebral Small Vessel Disease | en |
| dc.title | 大腦類澱粉血管病變之診斷與病態生理機轉之探討 | zh_TW |
| dc.title | Multimodal Diagnosis and Pathophysiology of Cerebral Amyloid Angiopathy | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-4721-1468 | |
| dc.contributor.coadvisor | 張哲逢(Che-Feng Chang) | |
| dc.contributor.oralexamcommittee | 林靜嫻(Hsin-Tsai Liu),曾明宗(Chih-Yang Tseng),吳文超,李怡慧,李俊泰 | |
| dc.subject.keyword | 類澱粉血管病變,大腦小血管病變,腦出血,大腦血管周隙,腦膜淋巴管, | zh_TW |
| dc.subject.keyword | Cerebral Amyloid Angiopathy,Cerebral Small Vessel Disease,Intracerebral Hemorrhage,Brain Perivascular Space,Meningeal Lymphatic Vessel, | en |
| dc.relation.page | 133 | |
| dc.identifier.doi | 10.6342/NTU202101066 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-06-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2006202116394300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 24.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
