請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭謙仁(Chian-Ren Jeng) | |
| dc.contributor.author | Yen-Han Chen | en |
| dc.contributor.author | 陳彥涵 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:04:34Z | - |
| dc.date.available | 2021-07-08 | |
| dc.date.available | 2022-11-24T03:04:34Z | - |
| dc.date.copyright | 2021-07-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-23 | |
| dc.identifier.citation | Ahlert, G. (2002). Longevity records: life spans of mammals, birds, amphibians, reptiles, and fish. Gerontology 48(1), 59. Aho, L., Pikkarainen, M., Hiltunen, M., Leinonen, V., and Alafuzoff, I. (2010). Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis 20(4), 1015-1028. Alzheimer's Association (2019). 2019 Alzheimer's disease facts and figures, in: Alzheimer's dementia. Vol.15, 321-387. Baghallab, I., Reyes-Ruiz, J.M., Abulnaja, K., Huwait, E., and Glabe, C. (2018). Epitomic characterization of the specificity of the anti-Amyloid Aβ monoclonal antibodies 6E10 and 4G8. J. Alzheimer's Dis. 66(3), 1235-1244. Barnes, N.Y., Li, L., Yoshikawa, K., Schwartz, L.M., Oppenheim, R.W., and Milligan, C.E. (1998). Increased production of amyloid precursor protein provides a substrate for caspase-3 in dying motoneurons. J Neurosci 18(15), 5869-5880. Braak, H., Braak, E., and Strothjohann, M. (1994). Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci Lett 171(1-2), 1-4. Carrodeguas, J.A., Rodolosse, A., Garza, M.V., Sanz-Clemente, A., Pérez-Pé, R., Lacosta, A.M., et al. (2005). The chick embryo appears as a natural model for research in beta-amyloid precursor protein processing. Neuroscience 134(4), 1285-1300. Caswell, M.D., Mok, S.S., Henry, A., Cappai, R., Klug, G., Beyreuther, K., et al. (1999). The amyloid beta-protein precursor of Alzheimer's disease is degraded extracellularly by a Kunitz protease inhibitor domain-sensitive trypsin-like serine protease in cultures of chick sympathetic neurons. Eur J Biochem 266(2), 509-516. Chambers, J.K., Tokuda, T., Uchida, K., Ishii, R., Tatebe, H., Takahashi, E., et al. (2015). The domestic cat as a natural animal model of Alzheimer’s disease. Acta Neuropathol. Commun. 3(1), 78. Chambers, J.K., Uchida, K., Harada, T., Tsuboi, M., Sato, M., Kubo, M., et al. (2012). Neurofibrillary tangles and the deposition of a beta amyloid peptide with a novel N-terminal epitope in the brains of wild Tsushima leopard cats. PLoS One 7(10), e46452. Chen, J.A., Fears, S.C., Jasinska, A.J., Huang, A., Al-Sharif, N.B., Scheibel, K.E., et al. (2018). Neurodegenerative disease biomarkers Abeta1-40, Abeta1-42, tau, and p-tau181 in the vervet monkey cerebrospinal fluid: Relation to normal aging, genetic influences, and cerebral amyloid angiopathy. Brain Behav 8(2), e00903. Cortes-Canteli, M., and Iadecola, C. (2020). Alzheimer's disease and vascular aging: JACC focus seminar. J Am Coll Cardiol 75(8), 942-951. Darusman, H.S., Gjedde, A., Sajuthi, D., Schapiro, S.J., Kalliokoski, O., Kristianingrum, Y.P., et al. (2014). Amyloid beta1–42 and the phoshorylated tau threonine 231 in brains of aged cynomolgus monkeys (Macaca fascicularis). Front. Aging Neurosci. 6(313). Del Hoyo, J., Elliot, A., and Sargatal, J. (1992). Handbook of Birds of the World, Vol. 1. Barcelona: Lynx Edicions. Edler, M.K., Sherwood, C.C., Meindl, R.S., Hopkins, W.D., Ely, J.J., Erwin, J.M., et al. (2017). Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiol Aging 59, 107-120. Emborg, M.E. (2017). Nonhuman primate models of neurodegenerative disorders. ILAR J 58(2), 190-201. Esselmann, H., Maler, J.M., Kunz, N., Otto, M., Paul, S., Lewczuk, P., et al. (2004). Lithium decreases secretion of aβ1–42 and c-truncated species aβ1–37/38/39/40 in chicken telencephalic cultures but specifically increases intracellular aβ1–38. Neurodegenerative Dis. 1(4-5), 236-241. Fiock, K.L., Smith, J.D., Crary, J.F., and Hefti, M.M. (2020). Beta-amyloid and tau pathology in the aging feline brain. J Comp Neurol 528(1), 108-113. Flower, M.S.S., (1938). The duration of life in animals - IV. Birds: special notes by orders and families, in Proceedings of the Zoological Society of London. 195-235. Gary, C., Lam, S., Herard, A.S., Koch, J.E., Petit, F., Gipchtein, P., et al. (2019). Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathol. Commun. 7(1), 126. Gatti, L., Tinelli, F., Scelzo, E., Arioli, F., Di Fede, G., Obici, L., et al. (2020). Understanding the pathophysiology of cerebral amyloid angiopathy. Int. J. Mol. Sci. 21(10), 3435. Gehlbach, F.R., (1994). The Eastern Screech-Owl: Life History, Ecology, and Behavior in Suburbia and the Countryside. College Station, TX: Texas A M University Press. Giaccone, G., Verga, L., Finazzi, M., Pollo, B., Tagliavini, F., Frangione, B., et al. (1990). Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neurosci Lett 114(2), 178-183. Gravina, S.A., Ho, L., Eckman, C.B., Long, K.E., Otvos, L., Jr., Younkin, L.H., et al. (1995). Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270(13), 7013-7016. Greenberg, S.M., Bacskai, B.J., Hernandez-Guillamon, M., Pruzin, J., Sperling, R., and van Veluw, S.J. (2020). Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 16(1), 30-42. Gunn-Moore, D.A., McVee, J., Bradshaw, J.M., Pearson, G.R., Head, E., and Gunn-Moore, F.J. (2006). Ageing changes in cat brains demonstrated by β-amyloid and AT8-immunoreactive phosphorylated tau deposits. J. Feline. Med. Surg. 8(4), 234-242. Härtig, W., Klein, C., Brauer, K., Schüppel, K.F., Arendt, T., Bigl, V., et al. (2001). Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison. Neurobiol Aging 22(1), 25-33. Head, E., Moffat, K., Das, P., Sarsoza, F., Poon, W., Landsberg, G., et al. (2005). β-Amyloid deposition and tau phosphorylation in clinically characterized aged cats. Neurobiol. Aging 26(5), 749-763. Heuer, E., Jacobs, J., Du, R., Wang, S., Keifer Jr, O.P., Cintron, A.F., et al. (2017a). Amyloid-related imaging abnormalities in an aged squirrel monkey with cerebral amyloid angiopathy. J. Alzheimer's Dis. 57(2), 519-530. Heuer, E., Jacobs, J., Du, R., Wang, S., Keifer, O.P., Cintron, A.F., et al. (2017b). Amyloid-related imaging abnormalities in an aged squirrel monkey with cerebral amyloid angiopathy. J Alzheimers Dis 57(2), 519-530. Hunter, S., and Brayne, C. (2017). Do anti-amyloid beta protein antibody cross reactivities confound Alzheimer disease research? J Negat Results Biomed 16(1), 1. Jäkel, L., Van Nostrand, W.E., Nicoll, J.A.R., Werring, D.J., and Verbeek, M.M. (2017). Animal models of cerebral amyloid angiopathy. Clin Sci (Lond) 131(19), 2469-2488. Kimoto, M., Ikoma, S., Fujimoto, S., Nakano, M., Shintani, S., Nishimura, M., et al. (2015). Pathological Study of Cerebral Amyloidosis in Three Aged Large Eagles. Jpn. J. Zoo Wildl. Med. 20(4), 71-74. Kimura, N., Nakamura, S., Goto, N., Narushima, E., Hara, I., Shichiri, S., et al. (2001). Senile plaques in an aged western lowland gorilla. Exp Anim 50(1), 77-81. Kinoshita, A., Fukumoto, H., Shah, T., Whelan, C.M., Irizarry, M.C., and Hyman, B.T. (2003). Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116(16), 3339-3346. Klimkiewicz, M.K. and A.G. Futcher, (1989). Longevity records of North American birds: supplement 1. J. Field Ornithol. 60: 469-494. Kohler, I. V., Preston, S. H., Lackey, L. B. (2006). Comparative mortality levels among selected species of captive animals. Demogr. Res. 15, 413-434. Kuhn, J., and Sharman, T. (2021). Cerebral Amyloid Angiopathy in StatPearls. (Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.). Kumar, S., Frost, J.L., Cotman, C.W., Head, E., Palmour, R., Lemere, C.A., et al. (2018). Deposition of phosphorylated amyloid-β in brains of aged nonhuman primates and canines. Brain Pathol 28(3), 427-430. Landsberg, G.M., Denenberg, S., and Araujo, J.A. (2010). Cognitive dysfunction in cats: a syndrome we used to dismiss as ‘old age’. J. Feline Med. Surg. 12(11), 837-848. Lardenoije, R., van den Hove, D.L.A., Havermans, M., van Casteren, A., Le, K.X., Palmour, R., et al. (2018). Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer's disease. Mol Cell Neurosci 86, 1-15. Latimer, C.S., Shively, C.A., Keene, C.D., Jorgensen, M.J., Andrews, R.N., Register, T.C., et al. (2019). A nonhuman primate model of early Alzheimer's disease pathologic change: Implications for disease pathogenesis. Alzheimers Dement. 15(1), 93-105. Levy, E., Amorim, A., Frangione, B., and Walker, L.C. (1995). β-Amyloid precursor protein gene in squirrel monkeys with cerebral amyloid angiopathy. Neurobiology of aging 16(5), 805-808. Lichtenberg-Kraag, B., and Mandelkow, E.M. (1990). Isoforms of tau protein from mammalian brain and avian erythrocytes: structure, self-assembly, and elasticity. J Struct Biol 105(1-3), 46-53. Liu, C.H., Huo, I.C., Chang, W.F., Chu, C.P., and Wang, S.J. (1996). An Atlas and Manual of Histopathological Staining Methods: Histochemistry. p.22-24 132 Maat-Schieman, M.L., Radder, C.M., van Duinen, S.G., Haan, J., and Roos, R.A. (1994). Hereditary cerebral hemorrhage with amyloidosis (Dutch): a model for congophilic plaque formation without neurofibrillary pathology. Acta Neuropathol 88(4), 371-378. Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A., and Cummings, J.L. (2015). Alzheimer's disease. Nat Rev Dis Primers 1, 15056. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., et al. (2005). Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47(2), 191-199. Mitchell, P.C., (1911). Proceedings of the Zoology Society of London 1911: 425. Mok, S.S., Clippingdale, A.B., Beyreuther, K., Masters, C.L., Barrow, C.J., and Small, D.H. (2000). A beta peptides and calcium influence secretion of the amyloid protein precursor from chick sympathetic neurons in culture. J Neurosci Res 61(4), 449-457. Nakamura, S., Nakayama, H., Uetsuka, K., Sasaki, N., Uchida, K., and Goto, N. (1995). Senile plaques in an aged two-humped (Bactrian) camel (Camelus bactrianus). Acta Neuropathol 90(4), 415-418. Nakayama, H., Katayama, K.-I., Ikawa, A., Miyawaki, K., Shinozuka, J., Uetsuka, K., et al. (1999). Cerebral amyloid angiopathy in an aged great spotted woodpecker (Picoides major). Neurobiol. Aging 20(1), 53-56. Nelson, P.T., Braak, H., and Markesbery, W.R. (2009). Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68(1), 1-14. Nelson, P.T., Greenberg, S.G., and Saper, C.B. (1994). Neurofibrillary tangles in the cerebral cortex of sheep. Neurosci. Lett. 170(1), 187-190. Oliveira, L.T., Matos, P.A., Provance, D.W., Jr., de Mello, F.G., Andrade, L.R., Sorenson, M.M., et al. (2012). Beta-amyloid peptide is internalized into chick retinal neurons and alters the distribution of myosin Vb. Cytoskeleton (Hoboken) 69(3), 166-178. Pope, W., Enam, S.A., Bawa, N., Miller, B.E., Ghanbari, H.A., and Klein, W.L. (1993). Phosphorylated tau epitope of Alzheimer's disease is coupled to axon development in the avian central nervous system. Exp. Neurol 120(1), 106-113. Robert, J., Button, E.B., Martin, E.M., McAlary, L., Gidden, Z., Gilmour, M., et al. (2020). Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E. Mol Neurodegener 15(1), 23. Roher, A.E., Lowenson, J.D., Clarke, S., Woods, A.S., Cotter, R.J., Gowing, E., et al. (1993a). Beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci 90(22), 10836-10840. Roher, A.E., Lowenson, J.D., Clarke, S., Woods, A.S., Cotter, R.J., Gowing, E., et al. (1993b). Beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A 90(22), 10836-10840. Ronald, J., Chen, Y., Bernas, L.M., Kitzler, H., Rogers, K., Hegele, R., et al. (2009). Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits. Brain 132, 1346 - 1354. Rosen, R.F., Tomidokoro, Y., Farberg, A.S., Dooyema, J., Ciliax, B., Preuss, T.M., et al. (2016). Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer's disease. Neurobiol Aging 44, 185-196. doi: 10.1016/j.neurobiolaging.2016.04.019. Rösner, H., Rebhan, M., Vacun, G., and Vanmechelen, E. (1995). Developmental expression of tau proteins in the chicken and rat brain: rapid down-regulation of a paired helical filament epitope in the rat cerebral cortex coincides with the transition from immature to adult tau isoforms. Int J Dev Neurosci 13(6), 607-617. doi: 10.1016/0736-5748(95)00042-f. Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L., and Cork, L.C. (1987). Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 235(4791), 873-877. Serizawa, S., Chambers, J.K., and Une, Y. (2012). Beta amyloid deposition and neurofibrillary tangles spontaneously occur in the brains of captive cheetahs (Acinonyx jubatus). Vet Pathol 49(2), 304-312. doi: 10.1177/0300985811410719. Shimada, A., Kuwamura, M., Awakura, T., Umemura, T., and Yamane, Y. (1994). Spongiform degeneration of the brain associated with uremia in an aged coyote (Canis latrans). Vet Pathol 31(4), 484-487. Small, D.H., Nurcombe, V., Moir, R., Michaelson, S., Monard, D., Beyreuther, K., et al. (1992). Association and release of the amyloid protein precursor of Alzheimer's disease from chick brain extracellular matrix. J Neurosci 12(11), 4143-4150. Takahashi, E., Kuribayashi, H., Chambers, J.K., Imamura, E., and Une, Y. (2014). Senile plaques and cerebral amyloid angiopathy in an aged California sea lion (Zalophus californianus). Amyloid 21(3), 211-215. Takahashi, R.H., Nagao, T., and Gouras, G.K. (2017). Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease. Pathol Int 67(4), 185-193. doi: 10.1111/pin.12520. Takaichi, Y., Chambers, J.K., Takahashi, K., Soeda, Y., Koike, R., Katsumata, E., et al. (2021). Amyloid β and tau pathology in brains of aged pinniped species (sea lion, seal, and walrus). Acta Neuropathol Commun 9(1), 10. Tarragon, E., Lopez, D., Estrada, C., Ana, G.C., Schenker, E., Pifferi, F., et al. (2013). Octodon degus: a model for the cognitive impairment associated with Alzheimer's disease. CNS Neurosci Ther 19(9), 643-648. Thal, D.R., Ghebremedhin, E., Rüb, U., Yamaguchi, H., Del Tredici, K., and Braak, H. (2002). Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61(3), 282-293. Tu, G.F., Southwell, B.R., and Schreiber, G. (1992). Species specificity and developmental patterns of expression of the beta amyloid precursor protein (APP) gene in brain, liver and choroid plexus in birds. Comp Biochem Physiol B 101(3), 391-398. Uchida, K., Yoshino, T., Yamaguchi, R., Tateyama, S., Kimoto, Y., Nakayama, H., et al. (1995). Senile plaques and other senile changes in the brain of an aged American black bear. Vet Pathol 32(4), 412-414. Van Der Kant, R., and Goldstein, L.S. (2015). Cellular functions of the amyloid precursor protein from development to dementia. Developmental cell 32(4), 502-515. Vite, C.H., and Head, E. (2014). Aging in the canine and feline brain. Vet. Clin. North Am. Small Anim. Pract. 44(6), 1113-1129. Walker, L.C. (1997). Animal models of cerebral β-amyloid angiopathy. Brain Res. Rev. 25(1), 70-84. Whittington, P. A., Dyer, B. M., Klages, N. T. W. (2000). Maximum longevities of African penguins (Spheniscus demersus) based on banding records. Mar. Ornithol., 28, 81-82. Wippold, F.J., 2nd, Cairns, N., Vo, K., Holtzman, D.M., and Morris, J.C. (2008). Neuropathology for the neuroradiologist: plaques and tangles. AJNR Am J Neuroradiol 29(1), 18-22. Yamaguchi, H., Haga, C., Hirai, S., Nakazato, Y., and Kosaka, K. (1989). Methenamine Silver Stain Impregnates Amyloid-related Components of Senile Plaques in the Alzheimer Brains as Clearly as beta-protein Immunostaining. Ann. Rep. Coll. Care Technol. Gunma Univ 10, 121-130. Yamaguchi, H., Hirai, S., Morimatsu, M., Shoji, M., and Harigaya, Y. (1988). Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathologica 77(2), 113-119. Youssef, S., Capucchio, M.T., Rofina, J., Chambers, J., Uchida, K., Nakayama, H., et al. (2016). Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet. Pathol. 53(2), 327-348. Young, A. M., Hobson, E. A., Lackey, L. B., Wright, T. F. (2012). Survival on the ark: life history trends in captive parrots. Anim. Conserv. 15(1), 28–53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80328 | - |
| dc.description.abstract | "阿茲海默症(Alzheimer’s Disease, AD)是人類老年醫學造成「失智症」最重要的疾病,約佔失智症人口60-70%。本病是進行性的神經性病變,可引起程度不一的認知功能障礙,最重要的組織病變包含:(1) 細胞外可見乙型類澱粉蛋白(Beta-amyloid)沉著,形成類澱粉斑塊(Aß plaques, senile plaques)或出現腦部類澱粉血管病變(Cerebral amyloid angiopathy, CAA);(2) 細胞內過磷化tau蛋白(hp-tau)堆積,嚴重者可造成神經元壞死,形成神經元纖維纏結(Neurofibrillary tangles, NFTs)。至今,本病仍有部分致病機轉尚未全然解開。根據文獻,許多老年動物被發現有類似人類阿茲海默症的腦部病變,包含不同程度的乙型類澱粉蛋白(Beta-amyloid)沉積與神經元纖維纏結(NFTs)的神經元內堆積,包括靈長目、食肉目、鯨偶蹄目、囓齒目、兔型目、馬(奇蹄目)與其他海洋哺乳類,且於不同物種有不同的病變發展。不過,相關的研究在鳥類中仍非常少。本論文為老年鳥類乙型類澱粉蛋白(Beta-amyloid)沉著提供一個回溯性研究,並發現於鳥類可有三種不同型態的乙型類澱粉蛋白沉積,以及證實了腦血管乙型類澱粉沉著可於鳥類中被發現。本研究樣本共包含13個目,29個物種,共50隻個體,並以免疫組織化學染色進行四種(6E10、4G8、x-40、x-42)抗乙型類澱粉蛋白(Beta-amyloid)及一種(AT100)抗過磷酸化tau蛋白染色,偵測是否有AD相關之異常蛋白存在於鳥類腦組織中。研究結果發現,除一34歲白腹海鵰可在H E染色下看到明顯微小膠細胞增多以及聚集在神經纖維周圍之外,其他病例的腦組織皆未出現明顯組織病變。在IHC染色結果,本實驗首次發現了白腹海鵰腦組織病例可顯示出3+強陽性,且可見明顯類澱粉斑塊(Aß plaques)及多發局部的類澱粉血管病變(CAA),呈現diffuse to compact斑塊(Diffuse/compact plaque)。此外,另一熊鷹(赫氏角鷹,Nisaetus nipalensis)病例亦為首次發現,可見大腦及小腦腦膜血管出現明顯多發Aß陽性訊號。挑選幾個乙型類澱粉蛋白(Beta-amyloid)陽性樣本進一步以甲烯胺嗜銀染色(Methenamine silver,MS)染色及類澱粉樣染色(Congo Red stain),以確定類澱粉斑塊(Aß plaques)的結構存在。所有老年鳥類樣本經AT100染色後皆為陰性,未見明顯細胞內tau蛋白堆積的證據。而兩例IHC陽性病例,皆呈現類澱粉樣染色(Congo Red stain)陰性結果。此外,Aß (x)-40與42兩種抗體的染色,在本實驗結果討論中,被認為是於鳥類研究中較有意義的抗體。本研究提供關於老年鳥類腦部乙型類澱粉蛋白(Beta-amyloid)沉著的初步視野,並發現乙型類澱粉蛋白(Beta-amyloid)的異常堆積可能具有好發於鷹科海鵰屬(Haliaeetus spp.)或其他老年猛禽類的傾向,但相關疾病機轉仍需要更進一步的探究。據此,老年鳥類可能是自然發生類阿茲海默症腦部病變的動物,可出現與人類或其他哺乳動物類似乙型類澱粉蛋白(Beta-amyloid)的堆積,但沒有神經原內的異常tau蛋白形成。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:04:34Z (GMT). No. of bitstreams: 1 U0001-2206202118395300.pdf: 12675444 bytes, checksum: 8a316f8b39f2827f34f4d785be309b46 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝..................................................................i 摘要................................................................iii Abstract..............................................................v Contents............................................................vii List of Tables.......................................................ix List of Figures.......................................................x Chapter 1 Introduction................................................1 1. Alzheimer’s Disease (AD) in Humans...............................1 1.1 General Concept of AD.........................................1 1.2 Structures of β-Amyloid Protein in AD.........................1 1.3 Patterns of β-Amyloid Plaque..................................2 1.4 Cerebral Amyloid Angiopathy (CAA).............................3 2. Cerebral β-Amyloid Accumulation in Animals.......................4 2.1 AD-like Histopathological Features in Domestic Dogs and Cats..4 2.2 AD-like Histopathological Features in Wildlife................4 3. Aim of the Study.................................................9 Chapter 2 Materials and Methods......................................11 Animal Samples.....................................................11 Histopathology.....................................................11 Methenamine Silver (MS) stain....................................11 Congo Red stain..................................................12 Immunohistochemistry (IHC).........................................13 Antibodies.......................................................13 Scoring............................................................14 Chapter 3 Results....................................................16 Animals Specimens Collection.......................................16 Results of IHC and Scoring.........................................16 6E10 (N=50)......................................................17 4G8 (N=48).......................................................18 Aß40 (N=50)......................................................18 Aß42 (N=50)......................................................19 Hyperphosphorylated tau protein AT100..............................19 IHC Results in the Control Group...................................19 MS and Congo red stain.............................................20 Chapter 4 Discussion.................................................21 General Phenomenon of Aß in Avian species..........................21 Types/Patterns of Aß in Avian species..............................22 IHC Results in Different under Different Antibodies................22 IHC Results in Different Avian Orders..............................23 IHC Results in Younger Birds.......................................24 Histochemistry Staining Characteristics of Aß in Avian.............25 Chapter 5 Conclusion and Future Works................................27 References...........................................................29 Tables of Current study..............................................40 Figures of Current Study.............................................46 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熊鷹 | zh_TW |
| dc.subject | 乙型類澱粉蛋白 | zh_TW |
| dc.subject | 腦部類澱粉血管病變 | zh_TW |
| dc.subject | 海鵰屬 | zh_TW |
| dc.subject | 鳥類腦神經病變 | zh_TW |
| dc.subject | Sea eagle (Haliaeetus spp.) | en |
| dc.subject | Beta-amyloid (Aβ) | en |
| dc.subject | Cerebral amyloid angiopathy (CAA) | en |
| dc.subject | Avian neuroscience | en |
| dc.subject | Hodgson's hawk-eagle (Nisaetus nipalensis) | en |
| dc.title | 鳥類腦乙型類澱粉沉著症回溯性研究 | zh_TW |
| dc.title | A Retrospective Survey of Cerebral Beta-Amyloid Accumulation in Avian Species | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張惠雯(Hui-Wen Chang),張晏禎(Yen-Chen Chang) | |
| dc.contributor.oralexamcommittee | 龎飛(Hsin-Tsai Liu),邱慧英(Chih-Yang Tseng) | |
| dc.subject.keyword | 鳥類腦神經病變,乙型類澱粉蛋白,腦部類澱粉血管病變,海鵰屬,熊鷹, | zh_TW |
| dc.subject.keyword | Avian neuroscience,Beta-amyloid (Aβ),Cerebral amyloid angiopathy (CAA),Sea eagle (Haliaeetus spp.),Hodgson's hawk-eagle (Nisaetus nipalensis), | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202101098 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-06-23 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 分子暨比較病理生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子暨比較病理生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2206202118395300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
