Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80321
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇(Ping-Hei Chen)
dc.contributor.authorCheng-Han Lien
dc.contributor.author李政翰zh_TW
dc.date.accessioned2022-11-24T03:04:27Z-
dc.date.available2021-07-08
dc.date.available2022-11-24T03:04:27Z-
dc.date.copyright2021-07-08
dc.date.issued2021
dc.date.submitted2021-06-25
dc.identifier.citationReference [1] R. G. Picknett and R. Bexon, 'EVAPORATION OF SESSILE OR PENDANT DROPS IN STILL AIR,' Journal of Colloid and Interface Science, vol. 61, no. 2, pp. 336-350, 1977. [2] H. Y. Erbil, G. McHale, and M. I. Newton, 'Drop evaporation on solid surfaces: Constant contact angle mode,' (in English), Langmuir, Article vol. 18, no. 7, pp. 2636-2641, Apr 2002. [3] K. S. Birdi, D. T. Vu, and A. Winter, 'A STUDY OF THE EVAPORATION RATES OF SMALL WATER DROPS PLACED ON A SOLID-SURFACE,' (in English), Journal of Physical Chemistry, Article vol. 93, no. 9, pp. 3702-3703, May 1989. [4] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, 'Contact line deposits in an evaporating drop,' Physical Review E, vol. 62, no. 1, pp. 756-765, Jul 2000. [5] K. S. Birdi and D. T. Vu, 'WETTABILITY AND THE EVAPORATION RATES OF FLUIDS FROM SOLID-SURFACES,' Journal of Adhesion Science and Technology, vol. 7, no. 6, pp. 485-493, 1993. [6] K. Uno, K. Hayashi, T. Hayashi, K. Ito, and H. Kitano, 'Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces,' Colloid and Polymer Science, vol. 276, no. 9, pp. 810-815, Sep 1998. [7] M. E. R. Shanahan and C. Bourges, 'EFFECTS OF EVAPORATION ON CONTACT ANGLES ON POLYMER SURFACES,' International Journal of Adhesion and Adhesives, vol. 14, no. 3, pp. 201-205, Jul 1994. [8] C. Bourgesmonnier and M. E. R. Shanahan, 'INFLUENCE OF EVAPORATION ON CONTACT-ANGLE,' Langmuir, vol. 11, no. 7, pp. 2820-2829, Jul 1995. [9] K. Sefiane, L. Tadrist, and M. Douglas, 'Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,' International Journal of Heat and Mass Transfer, vol. 46, no. 23, pp. 4527-4534, Nov 2003. [10] S. Y. Misyura, 'Evaporation of a sessile water drop and a drop of aqueous salt solution,' Scientific Reports, vol. 7, Nov 2017, Art. no. 14759. [11] C. H. Jeong, H. J. Lee, D. Y. Kim, S. B. Ahangar, C. K. Choi, and S. H. Lee, 'Quantitative analysis of contact line behaviors of evaporating binary mixture droplets using surface plasmon resonance imaging,' International Journal of Heat and Mass Transfer, vol. 165, Feb 2021, Art. no. 120690. [12] G. Gogos, S. Soh, and D. N. Pope, 'Effects of gravity and ambient pressure on liquid fuel droplet evaporation,' International Journal of Heat and Mass Transfer, vol. 46, no. 2, pp. 283-296, Jan 2003, Art. no. Pii s0017-9310(02)00269-7. [13] T. Kitano, J. Nishio, R. Kurose, and S. Komori, 'Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation,' Combustion and Flame, vol. 161, no. 2, pp. 551-564, Feb 2014. [14] Y. Fukatani, D. Orejon, Y. Kita, Y. Takata, J. Kim, and K. Sefiane, 'Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation,' Physical Review E, vol. 93, no. 4, Apr 2016, Art. no. 043103. [15] F. Girard, M. Antoni, S. Faure, and A. Steinchen, 'Influence of heating temperature and relative humidity in the evaporation of pinned droplets,' Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 323, no. 1-3, pp. 36-49, Jun 2008. [16] B. Sobac and D. Brutin, 'Thermal effects of the substrate on water droplet evaporation,' Physical Review E, vol. 86, no. 2, Aug 2012, Art. no. 021602. [17] A. Alizadeh et al., 'Temperature dependent droplet impact dynamics on flat and textured surfaces,' Applied Physics Letters, vol. 100, no. 11, Mar 2012, Art. no. 111601. [18] M. Gao, P. Kong, and L. X. Zhang, 'Evaporation dynamics of different sizes sessile droplets on hydrophilic and hydrophobic heating surface under constant wall heat fluxes conditions,' International Communications in Heat and Mass Transfer, vol. 93, pp. 93-99, Apr 2018. [19] M. Gao, P. Kong, L. X. Zhang, and J. N. Liu, 'An experimental investigation of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat flux,' International Communications in Heat and Mass Transfer, vol. 88, pp. 262-268, Nov 2017. [20] J. H. Kim, S. I. Ahn, J. H. Kim, and W. C. Zin, 'Evaporation of water droplets on polymer surfaces,' Langmuir, vol. 23, no. 11, pp. 6163-6169, May 2007. [21] C. H. Choi and C. J. Kim, 'Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights,' Langmuir, vol. 25, no. 13, pp. 7561-7567, Jul 2009. [22] Z. H. Pan, J. A. Weibel, and S. V. Garimella, 'Influence of Surface Wettability on Transport Mechanisms Governing Water Droplet Evaporation,' Langmuir, vol. 30, no. 32, pp. 9726-9730, Aug 2014. [23] X. M. Chen et al., 'Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects,' Physical Review Letters, vol. 109, no. 11, Sep 2012, Art. no. 116101. [24] T. Furuta, T. Isobe, M. Sakai, S. Matsushita, and A. Nakajima, 'Wetting mode transition of nanoliter scale water droplets during evaporation on superhydrophobic surfaces with random roughness structure,' Applied Surface Science, vol. 258, no. 7, pp. 2378-2383, Jan 2012. [25] D. G. Kang, G. M. Nam, W. K. In, and C. Y. Lee, 'Evaporation of sessile water droplet on heated surface with needle-shaped nanostructures by pre-boiling oxidation process,' Experimental Thermal and Fluid Science, vol. 101, pp. 193-200, Jan 2019. [26] S. Dash and S. V. Garimella, 'Droplet Evaporation Dynamics on a Superhydrophobic Surface with Negligible Hysteresis,' Langmuir, vol. 29, no. 34, pp. 10785-10795, Aug 2013. [27] P. C. Tsai, R. G. H. Lammertink, M. Wessling, and D. Lohse, 'Evaporation-Triggered Wetting Transition for Water Droplets upon Hydrophobic Microstructures,' Physical Review Letters, vol. 104, no. 11, Mar 2010, Art. no. 116102. [28] D. Orejon, K. Sefiane, and M. E. R. Shanahan, 'Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration,' Langmuir, vol. 27, no. 21, pp. 12834-12843, Nov 2011. [29] S. Armstrong, G. McHale, R. Ledesma-Aguilar, and G. G. Wells, 'Evaporation and Electrowetting of Sessile Droplets on Slippery Liquid-Like Surfaces and Slippery Liquid-Infused Porous Surfaces (SLIPS),' Langmuir, vol. 36, no. 38, pp. 11332-11340, Sep 2020. [30] Y. S. Yu, Z. Q. Wang, and Y. P. Zhao, 'Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces,' Journal of Colloid and Interface Science, vol. 365, no. 1, pp. 254-259, Jan 2012. [31] E. Y. Gatapova, A. A. Semenov, D. V. Zaitsev, and O. A. Kabov, 'Evaporation of a sessile water drop on a heated surface with controlled wettability,' Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 441, pp. 776-785, Jan 2014. [32] H. C. Cheng, T. L. Chang, and P. H. Chen, 'Experimental investigation of inner bubble dynamics during water droplet evaporation from heated surfaces with different roughness and wettability levels,' International Journal of Heat and Mass Transfer, vol. 157, Aug 2020, Art. no. 119980. [33] T. Furuta, A. Nakajima, M. Sakai, T. Isobe, Y. Kameshima, and K. Okada, 'Evaporation and Sliding of Water Droplets on Fluoroalkylsilane Coatings with Nanoscale Roughness,' Langmuir, vol. 25, no. 10, pp. 5417-5420, May 2009. [34] S. A. Kulinich and M. Farzaneh, 'Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces,' Applied Surface Science, vol. 255, no. 7, pp. 4056-4060, Jan 2009. [35] T. S. Lin, Y. H. Zerig, R. Y. Tsay, and S. Y. Lin, 'Roughness-induced strong pinning for drops evaporating from polymeric surfaces,' Journal of the Taiwan Institute of Chemical Engineers, vol. 62, pp. 54-59, May 2016. [36] E. Dietrich, E. S. Kooij, X. H. Zhang, H. J. W. Zandvliet, and D. Lohse, 'Stick-Jump Mode in Surface Droplet Dissolution,' Langmuir, vol. 31, no. 16, pp. 4696-4703, Apr 2015. [37] S. Maheshwari, L. Zhang, Y. X. Zhu, and H. C. Chang, 'Coupling between precipitation and contact-line dynamics: Multiring stains and stick-slip motion,' Physical Review Letters, vol. 100, no. 4, Feb 2008, Art. no. 044503. [38] D. Debuisson, R. Dufour, V. Senez, and S. Arscott, 'Wetting on smooth micropatterned defects,' Applied Physics Letters, vol. 99, no. 18, Oct 2011, Art. no. 184101. [39] D. Debuisson, V. Senez, and S. Arscott, 'Tunable contact angle hysteresis by micropatterning surfaces,' Applied Physics Letters, vol. 98, no. 18, May 2011, Art. no. 184101. [40] G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, 'Analysis of droplet evaporation on a superhydrophobic surface,' Langmuir, vol. 21, no. 24, pp. 11053-11060, Nov 2005. [41] S. Nukiyama, 'MAXIMUM AND MINIMUM VALUES OF HEAT Q TRANSMITTED FROM METAL TO BOILING WATER UNDER ATMOSPHERIC PRESSURE,' International Journal of Heat and Mass Transfer, vol. 9, no. 12, pp. 1419- , 1966. [42] H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, 'Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,' International Journal of Heat and Mass Transfer, vol. 52, no. 23-24, pp. 5459-5471, Nov 2009. [43] C. C. Hsu and P. H. Chen, 'Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,' International Journal of Heat and Mass Transfer, vol. 55, no. 13-14, pp. 3713-3719, Jun 2012. [44] M. C. Liu, K. J. Lu, X. R. Li, H. Liu, and D. W. Jing, 'Light-induced enhancement of critical heat flux on TiO2 coatings with specific surface topology,' Applied Thermal Engineering, vol. 174, Jun 2020, Art. no. 115333. [45] M. G. Kang, 'Effect of surface roughness on pool boiling heat transfer,' International Journal of Heat and Mass Transfer, vol. 43, no. 22, pp. 4073-4085, Nov 2000. [46] J. S. Kim, A. Girard, S. C. Jun, J. Lee, and S. M. You, 'Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces,' International Journal of Heat and Mass Transfer, vol. 118, pp. 802-811, Mar 2018. [47] M. R. M. Arenales, K. C. S. Sujith, L. S. Kuo, and P. H. Chen, 'Surface roughness variation effects on copper tubes in pool boiling of water,' International Journal of Heat and Mass Transfer, vol. 151, Apr 2020, Art. no. 119399. [48] H. Jo, H. S. Ahn, S. Kane, and M. H. Kim, 'A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,' International Journal of Heat and Mass Transfer, vol. 54, no. 25-26, pp. 5643-5652, Dec 2011. [49] C. C. Hsu, T. W. Su, and P. H. Chen, 'Pool boiling of nanoparticle-modified surface with interlaced wettability,' Nanoscale Research Letters, vol. 7, May 2012, Art. no. 259. [50] C. S. S. Kumar, Y. H. Chuang, M. R. M. Arenales, A. Joseph, and P. H. Chen, 'Effect of hydrophobic inclined patterns on pool boiling performance of cylindrical copper surfaces,' Heat and Mass Transfer, vol. 56, no. 5, pp. 1379-1389, May 2020. [51] H. C. Cheng, Z. X. Jiang, T. L. Chang, and P. H. Chen, 'Effects of difference in wettability level of biphilic patterns on copper tubes in pool boiling heat transfer,' Experimental Thermal and Fluid Science, vol. 120, Jan 2021, Art. no. 110241. [52] A. R. Motezakker, A. K. Sadaghiani, S. Celik, T. Larsen, L. G. Villanueva, and A. Kosar, 'Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling,' International Journal of Heat and Mass Transfer, vol. 135, pp. 164-174, Jun 2019. [53] P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, 'Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,' Applied Surface Science, vol. 257, no. 12, pp. 5213-5218, Apr 2011. [54] R. Jagdheesh, B. Pathiraj, E. Karatay, G. Romer, and A. J. H. in't Veldt, 'Laser-Induced Nanoscale Superhydrophobic Structures on Metal Surfaces,' Langmuir, vol. 27, no. 13, pp. 8464-8469, Jul 2011. [55] D. S. Zhang et al., 'A Simple Way To Achieve Pattern-Dependent Tunable Adhesion in Superhydrophobic Surfaces by a Femtosecond Laser,' Acs Applied Materials Interfaces, vol. 4, no. 9, pp. 4905-4912, Sep 2012. [56] B. Nunes et al., 'Ageing effects on the wettability behavior of laser textured silicon,' Applied Surface Science, vol. 257, no. 7, pp. 2604-2609, Jan 2011. [57] J. Y. Long, M. L. Zhong, H. J. Zhang, and P. X. Fan, 'Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air,' Journal of Colloid and Interface Science, vol. 441, pp. 1-9, Mar 2015. [58] U. Trdan, M. Hocevar, and P. Gregorcic, 'Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance,' Corrosion Science, vol. 123, pp. 21-26, Jul 2017. [59] H. C. Cheng, Z. X. Jiang, T. L. Chang, and P. H. Chen, 'Roughness and wettability properties of plain and silica-coated copper surfaces textured with picosecond laser,' Applied Surface Science, vol. 514, Jun 2020, Art. no. 145918. [60] T. Young, 'An essay on the cohesion of fluids,' Philosophical transactions of the royal society of London, vol. 95, pp. 65-87, 1805. [61] R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936. [62] A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces,' Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944. [63] C. J. Brinker, 'HYDROLYSIS AND CONDENSATION OF SILICATES - EFFECTS ON STRUCTURE,' Journal of Non-Crystalline Solids, vol. 100, no. 1-3, pp. 31-50, Mar 1988. [64] H. C. Cheng, Y. Y. Chen, T. L. Chang, and P. H. Chen, 'Effect of biomimetic fishbone-patterned copper tubes on pool boiling heat transfer,' International Journal of Heat and Mass Transfer, vol. 162, Dec 2020, Art. no. 120371. [65] C. C. Hsu, T. W. Su, C. H. Wu, L. S. Kuo, and P. H. Chen, 'Influence of surface temperature and wettability on droplet evaporation,' Applied Physics Letters, vol. 106, no. 14, Apr 2015, Art. no. 141602. [66] H. Hu and R. G. Larson, 'Evaporation of a sessile droplet on a substrate,' Journal of Physical Chemistry B, vol. 106, no. 6, pp. 1334-1344, Feb 2002. [67] M. A. Kadhim, N. Kapur, J. L. Summers, and H. Thompson, 'Experimental and Theoretical Investigation of Droplet Evaporation on Heated Hydrophilic and Hydrophobic Surfaces,' Langmuir, vol. 35, no. 19, pp. 6256-6266, May 2019. [68] N. N. Lebedev, Special functions and their applications. Prentice-Hall, Inc.: United States of America, 1965, p. 322. [69] Y. O. Popov, 'Evaporative deposition patterns: Spatial dimensions of the deposit,' Physical Review E, vol. 71, no. 3, Mar 2005, Art. no. 036313.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80321-
dc.description.abstract眾多的研究顯示,表面潤濕性及粗糙度對於液滴的蒸發有著重要的影響。然而,大多數的研究都著重在較低溫的均質表面上(小於100℃)。本論文研究了過熱表面上異質濕潤性之環型圖案對於液滴的蒸發之影響。異質潤濕性表面先以溶膠凝膠法製造出均質超疏水表面,再使用超快皮秒雷射構織出不同尺寸的超親水環型圖案。在過熱條件下,液滴的蒸發沸騰現象在這種表面上也將一併探討。實驗結果顯示,相較於均質潤濕性表面,液滴在異質潤濕性之環狀圖案表面皆有著較快的蒸發過程。其中L25有著最短的蒸發時間,因為其表面具有多孔結構且有著較粗的環型圖案,使L25有著優異的氣泡動態。為了更深入的研究異質潤濕性之環型圖案表面對蒸發的影響,本研究也透過高速攝影機去紀錄並分析液滴的變化與內部氣泡的動態。在蒸發過程的末期出現了環型液滴,此環型液滴被認為能提升整體蒸發的速率。最後,本研究的實驗數據也將一併與前人提出的預測模型進行比對與討論。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:04:27Z (GMT). No. of bitstreams: 1
U0001-2306202121225300.pdf: 5117177 bytes, checksum: bc69389467cf874ec564aaecc3e12f66 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of Contents 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv Nomenclature v Table of Contents viii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature review 2 1.2.1 Droplet evaporation 2 1.2.2 Effect of surface wettability on droplet evaporation 2 1.2.3 Effect of surface roughness on droplet evaporation 4 1.2.4 Pool boiling 7 1.2.5 Surface properties of laser-textured modification 10 1.3 Research purposes 30 Chapter 2 Theory 31 2.1 Surface energy and wettability 31 2.1.1 Surface contact angle 32 2.1.2 Young’s equation 32 2.1.3 Wenzel’s model 33 2.1.4 Cassie-Baxter model 33 2.2 Principle of pool boiling 36 2.3 Principle of sol-gel process 38 2.4 Pulsed laser 41 Chapter 3 Experimental Approach 42 3.1 Experimental setups 42 3.2 Surface modification 44 3.2.1 Preparation of homogeneous superhydrophobic surface 44 3.2.2 Preparation of biphilic surface with laser-textured 45 3.2.3 Parameter of all experimental samples in this study 46 3.3 Instruments of measuring surface characteristics 51 3.3.1 Surface wettability 51 3.3.2 Surface roughness and morphology 51 3.4 Data reduction 53 3.5 Experimental procedures 54 Chapter 4 Results and Discussion 55 4.1 Surface properties of biphilic surfaces with laser-textured 55 4.1.1 Surface wettability 55 4.1.2 Surface roughness and morphology 55 4.2 Droplet evaporation time on superheated biphilic surface 60 4.2.1 Inner bubble dynamics 61 4.2.2 Formation of ring-shape droplet during evaporation 63 4.3 Compared to prediction model 70 Chapter 5 Conclusions and Future Prospects 75 5.1 Conclusions 75 5.2 Future Prospects 76 Appendix 78 Reference 88  
dc.language.isoen
dc.subject氣泡動態zh_TW
dc.subject異質潤濕性表面zh_TW
dc.subject熱傳zh_TW
dc.subject沸騰現象zh_TW
dc.subject液滴蒸發zh_TW
dc.subject皮秒雷射zh_TW
dc.subjectboilingen
dc.subjectdroplet evaporationen
dc.subjectbiphilic surfaceen
dc.subjectbubble dynamicsen
dc.subjectheat transferen
dc.subjectpicosecond laseren
dc.title具環狀液滴現象的異質濕潤性表面之液滴蒸發研究zh_TW
dc.titleRing Droplet Formation during Evaporation of a Sessile Water Droplet on a Biphilic Surfaceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張天立(Hsin-Tsai Liu),許進吉(Chih-Yang Tseng)
dc.subject.keyword液滴蒸發,沸騰現象,熱傳,異質潤濕性表面,皮秒雷射,氣泡動態,zh_TW
dc.subject.keyworddroplet evaporation,boiling,heat transfer,biphilic surface,picosecond laser,bubble dynamics,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202101112
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-06-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2306202121225300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved