Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧記華(Jih-Hwa Guh)
dc.contributor.authorYi-Huei Jiangen
dc.contributor.author江怡慧zh_TW
dc.date.accessioned2022-11-24T03:04:22Z-
dc.date.available2021-08-30
dc.date.available2022-11-24T03:04:22Z-
dc.date.copyright2021-08-30
dc.date.issued2021
dc.date.submitted2021-06-28
dc.identifier.citation[1] World Health Organization. Fact sheets-Cancer. (2018). from https://www.who.int/news-room/fact-sheets/detail/cancer [2] Ho, M. L. (2010). from http://www2.cch.org.tw/lungcancer/summary.htm [3] American Cancer Society. Lung Cancer. from https://www.cancer.org/cancer/lung-cancer.html [4] Yuan, T., Cantley, L. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27(41), 5497-5510. [5] Cheng, H., Shcherba, M., Pendurti, G., Liang, Y., Piperdi, B., Perez-Soler, R. (2014). Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung cancer management, 3(1), 67-75. [6] Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. BioMed research international, 2014, 150845 [7] Shivapurkar, N., Reddy, J., Chaudhary, P. M., Gazdar, A. F. (2003). Apoptosis and lung cancer: a review. Journal of cellular biochemistry, 88(5), 885-898. [8] Simons, K., Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387(6633), 569-572. [9] Beneteau, M., Pizon, M., Chaigne-Delalande, B., Daburon, S., Moreau, P., De Giorgi, F., Ichas, F., Rébillard, A., Dimanche-Boitrel, M.T., Taupin, J.L. (2008). Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway. Molecular cancer research, 6(4), 604-613. [10] Reis-Sobreiro, M., Roué, G., Moros, A., Gajate, C., De La Iglesia-Vicente, J., Colomer, D., Mollinedo, F. (2013). Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood cancer journal, 3(5), e118-e118. [11] Lu, Z., Wang, J., Zheng, T., Liang, Y., Yin, D., Song, R., Pei, T., Pan, S., Jiang, H., Liu, L. (2014). FTY720 inhibits proliferation and epithelial-mesenchymal transition in cholangiocarcinoma by inactivating STAT3 signaling. BMC cancer, 14(1), 783. [12] Zhang, L., Wang, H.D., Ji, X.J., Cong, Z.X., Zhu, J.H., Zhou, Y. (2013). FTY720 for cancer therapy. Oncology reports, 30(6), 2571-2578. [13] Zheng, T., Meng, X., Wang, J., Chen, X., Yin, D., Liang, Y., Song, X., Pan, S., Jiang, H., Liu, L. (2010). PTEN‐and p53‐mediated apoptosis and cell cycle arrest by FTY720 in gastric cancer cells and nude mice. Journal of cellular biochemistry, 111(1), 218-228. [14] Lorvik, K. B., Bogen, B., Corthay, A. (2012). Fingolimod blocks immunosurveillance of myeloma and B-cell lymphoma resulting in cancer development in mice. Blood, the journal of the American society of hematology, 119(9), 2176-2177. [15] Aguiar, C., Batista, S., Pacheco, R. (2015). Cardiovascular effects of fingolimod: relevance, detection and approach. Revista portuguesa de cardiologia (English Edition), 34(4), 279-285. [16] Ward, M. D., Jones, D. E., Goldman, M. D. (2014). Overview and safety of fingolimod hydrochloride use in patients with multiple sclerosis. Expert opinion on drug safety, 13(7), 989-998. [17] White, C., Alshaker, H., Cooper, C., Winkler, M., Pchejetski, D. (2016). The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget, 7(17), 23106. [18] Adachi, K., Chiba, K. (2007). FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspectives in medicinal chemistry, 1, 1177391X0700100002. [19] Leu, W.J., Swain, S. P., Chan, S.H., Hsu, J.L., Liu, S.P., Chan, M.L., Yu, C.C., Hsu, L.C., Chou, Y.L., Chang, W.L. (2016). Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: the role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways. Oncotarget, 7(47), 76995. [20] Ministry of Health and Welfare. Lung cancer prevention and control. (2019). from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=4050 [21] ASCO’s patient information website. Lung Cancer - Non-Small Cell. from https://www.cancer.net/cancer-types/lung-cancer-non-small-cell [22] Non-Small Cell Lung Cancer Treatment (PDQ®)–Health Professional Version. from https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq [23] Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A. F., Minna, J. D. (1989). p53: a frequent target for genetic abnormalities in lung cancer. Science, 246(4929), 491-494. [24] Ihle, N. T., Lemos, R., Wipf, P., Yacoub, A., Mitchell, C., Siwak, D., Mills, G. B., Dent, P., Kirkpatrick, D. L., Powis, G. (2009). Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer research, 69(1), 143-150. [25] Xie, C., Li, Y., Li, L.L., Fan, X.X., Wang, Y.W., Wei, C.L., Liu, L., Leung, E. L.H., Yao, X.J. (2017). Identification of a new potent inhibitor targeting KRAS in non-small cell lung cancer cells. Frontiers in pharmacology, 8, 823. [26] Baer, A., Colon-Moran, W., Bhattarai, N. (2018). Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Scientific reports, 8(1), 10910. doi: 10.1038/s41598-018-29355-0 [27] Chun, J., Hartung, H.P. (2010). Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clinical neuropharmacology, 33(2), 91. [28] Sharma, S., Mathur, A., Pradhan, S., Singh, D., Gupta, S. (2011). Fingolimod (FTY720): First approved oral therapy for multiple sclerosis. Journal of pharmacology pharmacotherapeutics, 2(1), 49. [29] Saddoughi, S. A., Gencer, S., Peterson, Y. K., Ward, K. E., Mukhopadhyay, A., Oaks, J., Bielawski, J., Szulc, Z. M., Thomas, R. J., Selvam, S. P. (2013). Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A‐RIPK1‐dependent necroptosis. EMBO molecular medicine, 5(1), 105-121. [30] Liu, H., Gu, Y., Wang, H., Yin, J., Zheng, G., Zhang, Z., Lu, M., Wang, C., He, Z. (2015). Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer. Oncotarget, 6(17), 14913. [31] Azuma, H., Takahara, S., Ichimaru, N., Wang, J. D., Itoh, Y., Otsuki, Y., Morimoto, J., Fukui, R., Hoshiga, M., Ishihara, T. (2002). Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer research, 62(5), 1410-1419. [32] Pchejetski, D., Bohler, T., Brizuela, L., Sauer, L., Doumerc, N., Golzio, M., Salunkhe, V., Teissié, J., Malavaud, B., Waxman, J. (2010). FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer research, 70(21), 8651-8661. [33] Matsuoka, Y., Nagahara, Y., Ikekita, M., Shinomiya, T. (2003). A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. British journal of pharmacology, 138(7), 1303-1312. [34] Bai, L.Y., Chiu, C.F., Chiu, S.J., Chu, P.C., Weng, J.R. (2017). FTY720 induces autophagy-associated apoptosis in human oral squamous carcinoma cells, in part, through a reactive oxygen species/Mcl-1-dependent mechanism. Scientific reports, 7(1), 1-10. [35] Kappos, L., Radue, E.-W., O'Connor, P., Polman, C., Hohlfeld, R., Calabresi, P., Selmaj, K., Agoropoulou, C., Leyk, M., Zhang-Auberson, L. (2010). A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. New england journal of medicine, 362(5), 387-401. [36] Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495-516. [37] Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. [38] Chaitanya, G. V., Alexander, J. S., Babu, P. P. (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell communication and signaling, 8(1), 31. [39] Chipuk, J., Bouchier-Hayes, L., Green, D. (2006). Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differentiation, 13(8), 1396-1402. [40] Green, D. R., Llambi, F. (2015). Cell death signaling. Cold Spring Harbor perspectives in biology, 7(12), a006080. [41] Cully, M., You, H., Levine, A. J., Mak, T. W. (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature reviews cancer, 6(3), 184-192. [42] Papadimitrakopoulou, V. (2012). Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non–small-cell lung cancer. Journal of thoracic oncology, 7(8), 1315-1326. [43] Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655-1657. [44] Sarris, E. G., Saif, M. W., Syrigos, K. N. (2012). The biological role of PI3K pathway in lung cancer. Pharmaceuticals, 5(11), 1236-1264. [45] Hay, N., Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes development, 18(16), 1926-1945. [46] Hemmings, B. A., Restuccia, D. F. (2012). Pi3k-pkb/akt pathway. Cold spring harbor perspectives in biology, 4(9), a011189. [47] Pike, L. J. (2003). Lipid rafts bringing order to chaos. Journal of lipid research, 44(4), 655-667. [48] Mollinedo, F., Gajate, C. (2015). Lipid rafts as major platforms for signaling regulation in cancer. Advances in biological regulation, 57, 130-146. [49] Adderley, H., Blackhall, F. H., Lindsay, C. R. (2019). KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine, 41, 711-716 [50] Lee, S., Rauch, J., Kolch, W. (2020). Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. International journal of molecular sciences, 21(3), 1102. [51] Decker, T., Kovarik, P. (2000). Serine phosphorylation of STATs. Oncogene, 19(21), 2628-2637. [52] Dhillon, A. S., Hagan, S., Rath, O., Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279-3290. [53] Zhang, W., Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell research, 12(1), 9-18. [54] Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C. M., Adams, P. D., Adeli, K. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 12(1), 1-222. [55] Levy, J. M. M., Towers, C. G., Thorburn, A. (2017). Targeting autophagy in cancer. Nature reviews cancer, 17(9), 528-542. [56] Lippai, M., Lőw, P. (2014). The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. BioMed research international, 2014, 832704 [57] Yun, C. W., Lee, S. H. (2018). The roles of autophagy in cancer. International journal of molecular sciences, 19(11), 3466. [58] Schmukler, E., Kloog, Y., Pinkas-Kramarski, R. (2014). Ras and autophagy in cancer development and therapy. Oncotarget, 5(3), 577. [59] Guo, J. Y., Chen, H.-Y., Mathew, R., Fan, J., Strohecker, A. M., Karsli-Uzunbas, G., Kamphorst, J. J., Chen, G., Lemons, J. M., Karantza, V. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes development, 25(5), 460-470. [60] Kinsey, C. G., Camolotto, S. A., Boespflug, A. M., Guillen, K. P., Foth, M., Truong, A., Schuman, S. S., Shea, J. E., Seipp, M. T., Yap, J. T. (2019). Protective autophagy elicited by RAF→ MEK→ ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nature medicine, 25(4), 620. [61] Bryant, K. L., Stalnecker, C. A., Zeitouni, D., Klomp, J. E., Peng, S., Tikunov, A. P., Gunda, V., Pierobon, M., Waters, A. M., George, S. D. (2019). Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature medicine, 25(4), 628. [62] Scrima, M., De Marco, C., Fabiani, F., Franco, R., Pirozzi, G., Rocco, G., Ravo, M., Weisz, A., Zoppoli, P., Ceccarelli, M. (2012). Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3 kinase. PloS one, 7(2). [63] Gao, X., Zhang, J. (2009). Akt signaling dynamics in plasma membrane microdomains visualized by FRET-based reporters. Communicative integrative biology, 2(1), 32-34. [64] Patel, H. H., Insel, P. A. (2009). Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxidants redox signaling, 11(6), 1357-1372. [65] Cordero, J. G., Juárez, M. L., González-Y-Merchand, J. A., Barrón, L. C., Castañeda, B. G. (2014). Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PloS one, 9(3). [66] Adam, R. M., Mukhopadhyay, N. K., Kim, J., Di Vizio, D., Cinar, B., Boucher, K., Solomon, K. R., Freeman, M. R. (2007). Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer research, 67(13), 6238-6246. [67] Gump, J. M., Staskiewicz, L., Morgan, M. J., Bamberg, A., Riches, D. W., Thorburn, A. (2014). Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nature cell biology, 16(1), 47. [68] Ferrer, I., Zugazagoitia, J., Herbertz, S., John, W., Paz-Ares, L., Schmid-Bindert, G. (2018). KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer, 124, 53-64. [69] Lee, E.-R., Kim, J.Y., Kang, Y.J., Ahn, J.Y., Kim, J.H., Kim, B.-W., Choi, H.Y., Jeong, M.-Y., Cho, S.-G. (2006). Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1763(9), 958-968. [70] Mendoza, M. C., Er, E. E., Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in biochemical sciences, 36(6), 320-328. [71] Manning, B. D., Toker, A. (2017). AKT/PKB signaling: navigating the network. Cell, 169(3), 381-405. [72] Rommel, C., Clarke, B. A., Zimmermann, S., Nuñez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G. D., Glass, D. J. (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science, 286(5445), 1738-1741. [73] Chaudhary, A., King, W., Mattaliano, M., Frost, J., Diaz, B., Morrison, D., Cobb, M., Marshall, M., Brugge, J. (2000). Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Current Biology, 10(9), 551-554. [74] Hong, S.K., Jeong, J. H., Chan, A. M., Park, J.I. (2013). AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion. Experimental cell research, 319(12), 1732-1743. [75] Brazil, D. P., Hemmings, B. A. (2001). Ten years of protein kinase B signalling: a hard Akt to follow. Trends in biochemical sciences, 26(11), 657-664. [76] Gajate, C., Gonzalez-Camacho, F., Mollinedo, F. (2009). Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochemical and biophysical research communications, 380(4), 780-784. [77] Mollinedo, F., Gajate, C. (2010). Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future oncology, 6(5), 811-821. [78] Marino, G., Niso-Santano, M., Baehrecke, E. H., Kroemer, G. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nature reviews molecular cell biology, 15(2), 81-94. [79] Beloribi-Djefaflia, S., Vasseur, S., Guillaumond, F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogenesis, 5(1), e189-e189. [80] Ichim, G., Tait, S. W. (2016). A fate worse than death: apoptosis as an oncogenic process. Nature reviews cancer, 16(8), 539.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80316-
dc.description.abstract"肺癌是全球最常見的惡性腫瘤類型,同時也是死亡率最高的癌症,其中又以非小細胞肺癌(non-small cell lung cancer)佔多數。雖然目前有許多化療藥物及標靶治療,但在台灣非小細胞肺癌的五年存活率仍然低於20%,且大部分的化療藥物會產生嚴重的副作用,因此開發新的治療藥物並且降低副作用是極為重要的。本篇論文發現化合物SPS-7(以三唑為基礎的FTY720衍生物)有效抑制非小細胞肺癌株NCI-H460的生長及增殖。同時發現SPS-7造成MAPK及Akt/mTOR/p70S6K/4EBP1的訊息傳遞減少,其中Akt/mTOR訊息傳遞是調控細胞生長及複製,非小細胞肺癌形成的初期也被報導對Akt/mTOR訊息傳遞具有依賴性。透過myristylated-Akt(持續活化Akt)能逆轉SPS-7對於mTOR/p70S6K/4EBP1及ERK所造成的抑制效果,證實Akt作為mTOR轉譯途徑以及活化ERK重要的上游調控角色,並且大量表現Myr-Akt 也降低SPS-7在細胞生長抑制的效果,代表Akt在NCI-H460細胞為重要的增殖訊息傳遞。SPS-7同時也能活化凋亡蛋白酶(caspase-8, -7, -3),造成sub-G1細胞群體數量增加,引發外源性細胞凋亡。此外,Akt/mTOR訊息傳遞及細胞凋亡(apoptosis)也被發現存在脂筏(lipid raft)上,SPS-7也造成在脂筏上的Akt/mTOR訊息傳遞減少,但透過外加膽固醇能部分回復減少的訊息傳遞。此外,近期的研究發現一些新穎的脂筏型態,例如細胞凋亡訊息傳遞因子富集的脂筏聚集(clusters of apoptotic signaling molecule-enriched rafts, CASMERs),本篇論文也發現SPS-7引起脂筏的重新分布,並聚集細胞凋亡接受體Fas到脂筏形成CASMERs,最終導致外源性細胞凋亡的增加。總結來說,此研究數據顯示SPS-7具有潛力成為治療非小細胞肺癌的藥物,其透過抑制Akt/mTOR訊息傳遞及MAPK訊息途徑,減少細胞增殖,同時影響脂筏的分佈,導致脂筏上的訊息改變,最終產生細胞凋亡。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:04:22Z (GMT). No. of bitstreams: 1
U0001-2306202123410000.pdf: 13205264 bytes, checksum: a02fd98035ea9f49d5591add7735b547 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 i Abstract ii List of Abbreviations iv Contents vi List of Figures viii List of Tables ix Aim of the Study 1 Chapter 1: Introduction 4 1.1 Lung cancer 4 1.2 Non-samll cell lung cancer (NSCLC) 4 1.3 FTY720 7 1.4 SPS-7 9 1.5 Apoptosis 9 1.6 PI3K/Akt/mTOR pathway 11 1.7 Lipid raft 12 1.8 MAPK 12 1.9 Autophagy 13 Chapter 2: Materials and Methods 15 2.1 Materials 15 2.2 Methods 16 Chapter 3: Results 24 3.1 Effect of FTY720 and SPS-7 on cell viability and cell proliferation in NCI-H460 cells. 24 3.2 Effect of SPS-7 on cell cycle progression in NCI-H460 cells. 24 3.3 Effect of SPS-7 on cell apoptosis in NCI-H460 cells. 25 3.4 Effect of SPS-7 on Akt/mTOR signaling in NCI-H460 cells. 25 3.5 Effect of SPS-7 on MAPK signaling in NCI-H460 cells. 26 3.6 Localization and meditation of Akt/mTOR signaling in lipid rafts. 26 3.7 Aggregation of Fas/CD95 in lipid rafts. 27 3.8 Effect of SPS-7 on autophagy in NCI-H460 cells. 28 Chapter 4: Discussion 30 Chapter 5: Conclusion 35 Appendices 36 Figures 38 References 55
dc.language.isozh-TW
dc.subject三唑類化合物zh_TW
dc.subject脂筏zh_TW
dc.subject非小細胞肺癌zh_TW
dc.subjectFTY720zh_TW
dc.subjectAktzh_TW
dc.subject細胞凋亡zh_TW
dc.subjectAkten
dc.subjectlipid raften
dc.subjectapoptosisen
dc.subjectnon-small cell lung canceren
dc.subjecttriazole-based compounden
dc.subjectFTY720en
dc.title探討三唑及氨基二醇為基礎的衍生物在人類非小細胞肺癌之抗癌機轉研究zh_TW
dc.titleStudy of Anticancer Mechanism of Triazole-Based Aminodiol Derivative against Human Non-Small Cell Lung Canceren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃聰龍(Hsin-Tsai Liu),許麗卿(Chih-Yang Tseng),蕭哲志,楊家榮
dc.subject.keywordFTY720,三唑類化合物,非小細胞肺癌,Akt,細胞凋亡,脂筏,zh_TW
dc.subject.keywordFTY720,triazole-based compound,non-small cell lung cancer,Akt,apoptosis,lipid raft,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202101116
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-06-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-2306202123410000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved