Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(CHANG-FU WU)
dc.contributor.authorChien-Mei Yenen
dc.contributor.author嚴千媄zh_TW
dc.date.accessioned2022-11-24T03:03:56Z-
dc.date.available2026-07-02
dc.date.available2022-11-24T03:03:56Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-05
dc.identifier.citation[1] P. L. Altman and D. S. Dittmer, 'Respiration and circulation,' Federation of American Societies for Experimental Biology Bethesda MD, 1971. [2] G. Polgar and T. R. Weng, 'The functional development of the respiratory system: from the period of gestation to adulthood,' American Review of Respiratory Disease, vol. 120, no. 3, pp. 625-695, 1979. [3] F. Strazny and S. F. Perry, 'Respiratory system: structure and function,' in Ecophysiology of Spiders: Springer, 1987, pp. 78-94. [4] E. R. Weibel, The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, 1984. [5] M. J. McEwan and L. F. Phillips, 'Chemistry of the Atmosphere,' nyhp, 1975. [6] P. Brimblecombe, Air composition and chemistry. Cambridge University Press, 1996. [7] J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change. John Wiley Sons, 2016. [8] A. J. Cohen, 'Outdoor air pollution and lung cancer,' Environmental health perspectives, vol. 108, no. suppl 4, pp. 743-750, 2000. [9] I. A. f. R. o. Cancer, 'Air pollution and cancer: IARC scientific publication no. 161,' France: IARC, 2013. [10] B. Brunekreef and S. T. Holgate, 'Air pollution and health,' The lancet, vol. 360, no. 9341, pp. 1233-1242, 2002. [11] A. C. Stern, Air Pollution: The effects of air pollution. Elsevier, 1977. [12] M. Kampa and E. Castanas, 'Human health effects of air pollution,' Environmental pollution, vol. 151, no. 2, pp. 362-367, 2008. [13] J. O. Anderson, J. G. Thundiyil, and A. Stolbach, 'Clearing the air: a review of the effects of particulate matter air pollution on human health,' Journal of Medical Toxicology, vol. 8, no. 2, pp. 166-175, 2012. [14] R. D. Brook et al., 'Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association,' Circulation, vol. 121, no. 21, pp. 2331-2378, 2010. [15] N. L. Mills et al., 'Adverse cardiovascular effects of air pollution,' Nature clinical practice Cardiovascular medicine, vol. 6, no. 1, pp. 36-44, 2009. [16] K.-H. Kim, E. Kabir, and S. Kabir, 'A review on the human health impact of airborne particulate matter,' Environment international, vol. 74, pp. 136-143, 2015. [17] F. J. Kelly and J. C. Fussell, 'Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter,' Atmospheric environment, vol. 60, pp. 504-526, 2012. [18] M. Sillanpää et al., 'Chemical composition and mass closure of particulate matter at six urban sites in Europe,' Atmospheric Environment, vol. 40, pp. 212-223, 2006. [19] S. Salvi and S. Holgate, 'Mechanisms of particulate matter toxicity,' Clinical and experimental allergy (Print), vol. 29, no. 9, pp. 1187-1194, 1999. [20] M. Kleinman et al., 'Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways,' Toxicology letters, vol. 178, no. 2, pp. 127-130, 2008. [21] X. Deng et al., 'Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells,' Apoptosis, vol. 19, no. 7, pp. 1099-1112, 2014. [22] C. Guo et al., 'Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study,' The Lancet Planetary Health, vol. 2, no. 3, pp. e114-e125, 2018. [23] W. H. Organization, 'WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment,' World Health Organization, 2006. [24] I. Kloog, B. Ridgway, P. Koutrakis, B. A. Coull, and J. D. Schwartz, 'Long-and short-term exposure to PM2. 5 and mortality: using novel exposure models,' Epidemiology (Cambridge, Mass.), vol. 24, no. 4, p. 555, 2013. [25] K. A. Miller et al., 'Long-term exposure to air pollution and incidence of cardiovascular events in women,' New England Journal of Medicine, vol. 356, no. 5, pp. 447-458, 2007. [26] C. A. Pope Iii et al., 'Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,' Jama, vol. 287, no. 9, pp. 1132-1141, 2002. [27] W. Ambient, 'Air Quality and Health,' Fact Sheet, no. 313, 2018. [28] M. C. Turner, D. Krewski, C. A. Pope III, Y. Chen, S. M. Gapstur, and M. J. Thun, 'Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers,' American journal of respiratory and critical care medicine, vol. 184, no. 12, pp. 1374-1381, 2011. [29] TWEPA, 'Air Quality Annual Report of R.O.C,' Environmental Protection Administration, Executive Yuan, 2019. [30] J. H. Knox, 'Issue of human rights obligations relating to the enjoyment of a safe, clean, healthy and sustainable environment: Report of the Special Rapportear,' Oficina del Alto Comisionado de Naciones Unidas para los Derechos Humanos (ACNUDH). Disponible en https://bit. ly/34P10PZ, 2019. [31] S.-W. Li, M. Chang, H. Li, X.-Y. Cui, and L. Q. Ma, 'Chemical compositions and source apportionment of PM2.5 during clear and hazy days: Seasonal changes and impacts of Youth Olympic Games,' Chemosphere, vol. 256, p. 127163, 2020, doi: 10.1016/j.chemosphere.2020.127163. [32] S. Mesías Monsalve et al., 'Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile,' Environmental Geochemistry and Health, vol. 40, no. 3, pp. 1077-1091, 2018, doi: 10.1007/s10653-017-9980-z. [33] M. S. Callén, A. Iturmendi, and J. M. López, 'Source apportionment of atmospheric PM2. 5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health,' Environmental pollution, vol. 195, pp. 167-177, 2014. [34] J. Tao et al., 'Impact of PM2. 5 chemical compositions on aerosol light scattering in Guangzhou—the largest megacity in South China,' Atmospheric Research, vol. 135, pp. 48-58, 2014. [35] T. Novakov, S. Chang, and A. Harker, 'Sulfates as pollution particulates: Catalytic formation on carbon (soot) particles,' Science, vol. 186, no. 4160, pp. 259-261, 1974. [36] Z. Ramadan, X.-H. Song, and P. K. Hopke, 'Identification of sources of Phoenix aerosol by positive matrix factorization,' Journal of the Air Waste Management Association, vol. 50, no. 8, pp. 1308-1320, 2000. [37] C.-Y. Hsu et al., 'Ambient PM2. 5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact,' Science of the Total Environment, vol. 590, pp. 204-214, 2017. [38] H.-T. Liao, C. C.-K. Chou, J. C. Chow, J. G. Watson, P. K. Hopke, and C.-F. Wu, 'Source and risk apportionment of selected VOCs and PM2. 5 species using partially constrained receptor models with multiple time resolution data,' Environmental pollution, vol. 205, pp. 121-130, 2015. [39] M. Jerrett et al., 'A review and evaluation of intraurban air pollution exposure models,' Journal of Exposure Science Environmental Epidemiology, vol. 15, no. 2, pp. 185-204, 2005. [40] U. EPA, 'Technology Transfer Network Support Center for Regulatory Atmospheric Modeling-SCRAM,' ed, 2008. [41] N. S. Holmes and L. Morawska, 'A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available,' Atmospheric environment, vol. 40, no. 30, pp. 5902-5928, 2006. [42] A. Russell and R. Dennis, 'NARSTO critical review of photochemical models and modeling,' Atmospheric environment, vol. 34, no. 12-14, pp. 2283-2324, 2000. [43] P. K. Hopke, Receptor modeling for air quality management. Elsevier, 1991. [44] P. K. Hopke and D. D. Cohen, 'Application of receptor modeling methods,' Atmospheric Pollution Research, vol. 2, no. 2, pp. 122-125, 2011. [45] T. G. Pace, 'Chemical mass balance,' Receptor modeling for air quality management, p. 83, 1991. [46] C. A. Belis et al., 'European guide on air pollution source apportionment with receptor models,' ed, 2014. [47] Z. Li et al., 'Sources of fine particle composition in New York city,' Atmospheric Environment, vol. 38, no. 38, pp. 6521-6529, 2004. [48] R. P. Wayne, 'Chemistry of atmospheres-An introduction to the chemistry of the atmospheres of earth, the planets, and their satellites,' oup, 1991. [49] T. Suzuki, 'A theoretical model for dispersion of tephra,' Arc volcanism: physics and tectonics, vol. 95, p. 113, 1983. [50] C. S. Lee et al., 'Seasonal variation of chemical characteristics of fine particulate matter at a high-elevation subtropical forest in East Asia,' Environmental Pollution, vol. 246, pp. 668-677, 2019. [51] C. C.-K. Chou et al., 'Lidar observations of the diurnal variations in the depth of urban mixing layer: a case study on the air quality deterioration in Taipei, Taiwan,' Science of the Total Environment, vol. 374, no. 1, pp. 156-166, 2007. [52] C.-P. Kuo, H.-T. Liao, C. C.-K. Chou, and C.-F. Wu, 'Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data,' Science of the total environment, vol. 472, pp. 880-887, 2014. [53] H.-T. Liao et al., 'Source apportionment of PM2. 5 size distribution and composition data from multiple stationary sites using a mobile platform,' Atmospheric Research, vol. 190, pp. 21-28, 2017. [54] K. Sasaki and K. Sakamoto, 'Vertical differences in the composition of PM10 and PM2. 5 in the urban atmosphere of Osaka, Japan,' Atmospheric Environment, vol. 39, no. 38, pp. 7240-7250, 2005. [55] C.-D. Wu and S.-C. C. Lung, 'Applying GIS and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts,' Journal of exposure science environmental epidemiology, vol. 22, no. 2, pp. 126-134, 2012. [56] K. H. Jung et al., 'Effects of floor level and building type on residential levels of outdoor and indoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in New York City,' Atmosphere, vol. 2, no. 2, pp. 96-109, 2011. [57] Y. Gao, Z. Wang, Q.-C. Lu, C. Liu, Z.-R. Peng, and Y. Yu, 'Prediction of vertical PM 2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model,' Frontiers of Earth Science, vol. 11, no. 2, pp. 347-360, 2017. [58] K. Zhang et al., 'Sources and vertical distribution of PM2. 5 over Shanghai during the winter of 2017,' Science of The Total Environment, vol. 706, p. 135683, 2020. [59] H.-T. Liao, J.-C. Chang, T.-T. Tsai, S.-W. Tsai, C. C.-K. Chou, and C.-F. Wu, 'Vertical distribution of source apportioned PM 2.5 using particulate-bound elements and polycyclic aromatic hydrocarbons in an urban area,' Journal of Exposure Science Environmental Epidemiology, vol. 30, no. 4, pp. 659-669, 2020. [60] V. A. Marple, K. L. Rubow, W. Turner, and J. D. Spengler, 'Low flow rate sharp cut impactors for indoor air sampling: design and calibration,' Japca, vol. 37, no. 11, pp. 1303-1307, 1987. [61] M. Eeftens et al., 'Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project,' Environmental science technology, vol. 46, no. 20, pp. 11195-11205, 2012. [62] R. Beelen et al., 'Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project,' The Lancet, vol. 383, no. 9919, pp. 785-795, 2014. [63] R. International. (2009). Standard Operating Procedure for the X-ray Fluorescence Analysis of Particulate Matter Deposits on Teflon Filters. [64] S. M. Larson and G. R. Cass, 'Characteristics of summer midday low-visibility events in the Los Angeles area,' Environmental science technology, vol. 23, no. 3, pp. 281-289, 1989. [65] B. H. Baek, V. P. Aneja, and Q. Tong, 'Chemical coupling between ammonia, acid gases, and fine particles,' Environmental Pollution, vol. 129, no. 1, pp. 89-98, 2004. [66] J. Sciare, H. Cachier, K. Oikonomou, P. Ausset, R. Sarda-Esteve, and N. Mihalopoulos, 'Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach,' 2003. [67] M. Claeys et al., 'Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006–2007,' Journal of Aerosol Science, vol. 41, no. 1, pp. 13-22, 2010. [68] R. M. Harrison, M. Msibi, A.-M. Kitto, and S. Yamulki, 'Atmospheric chemical transformations of nitrogen compounds measured in the North Sea experiment, September 1991,' Atmospheric Environment, vol. 28, no. 9, pp. 1593-1599, 1994. [69] S. Lee, Methane and its Derivatives. Crc Press, 2017. [70] A. G. Russell, G. J. McRae, and G. R. Cass, 'Mathematical modeling of the formation and transport of ammonium nitrate aerosol,' Atmospheric Environment (1967), vol. 17, no. 5, pp. 949-964, 1983. [71] K. Yoshizumi and T. Okita, 'Quantitative estimation of sodium-and ammonium-nitrate, ammonium chloride, and ammonium sulfate in ambient particulate matter,' Journal of the Air Pollution Control Association, vol. 33, no. 3, pp. 224-226, 1983. [72] A. Allen, R. M. Harrison, and J.-W. Erisman, 'Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols,' Atmospheric Environment (1967), vol. 23, no. 7, pp. 1591-1599, 1989. [73] D. Salcedo et al., 'Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite,' 2006. [74] G. Rolph, A. Stein, and B. Stunder, 'Real-time environmental applications and display system: READY,' Environmental Modelling Software, vol. 95, pp. 210-228, 2017. [75] P. Seibert and A. Frank, 'Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode,' Atmospheric Chemistry and Physics, vol. 4, no. 1, pp. 51-63, 2004. [76] M. D. Cheng, P. K. Hopke, and Y. Zeng, 'A receptor‐oriented methodology for determining source regions of particulate sulfate observed at Dorset, Ontario,' Journal of Geophysical Research: Atmospheres, vol. 98, no. D9, pp. 16839-16849, 1993. [77] A. Stein, R. R. Draxler, G. D. Rolph, B. J. Stunder, M. Cohen, and F. Ngan, 'NOAA’s HYSPLIT atmospheric transport and dispersion modeling system,' Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. 2059-2077, 2015. [78] P. K. Hopke, 'A guide to positive matrix factorization,' in Workshop on UNMIX and PMF as Applied to PM2, 2000, vol. 5, p. 600. [79] P. Paatero and U. Tapper, 'Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values,' Environmetrics, vol. 5, no. 2, pp. 111-126, 1994. [80] G. Norris, R. Duvall, S. Brown, and S. Bai, 'Epa positive matrix factorization (PMF) 5.0 fundamentals and user guide prepared for the US environmental protection agency office of research and development, Washington, DC,' Inc., Petaluma, 2014. [81] A. V. Polissar, P. K. Hopke, P. Paatero, W. C. Malm, and J. F. Sisler, 'Atmospheric aerosol over Alaska: 2. Elemental composition and sources,' Journal of Geophysical Research: Atmospheres, vol. 103, no. D15, pp. 19045-19057, 1998. [82] E. Lee, C. K. Chan, and P. Paatero, 'Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong,' Atmospheric Environment, vol. 33, no. 19, pp. 3201-3212, 1999. [83] L. Zhou, E. Kim, P. K. Hopke, C. O. Stanier, and S. Pandis, 'Advanced factor analysis on Pittsburgh particle size-distribution data special issue of aerosol science and technology on findings from the Fine Particulate Matter Supersites Program,' Aerosol Science and Technology, vol. 38, no. S1, pp. 118-132, 2004. [84] A. Reff, S. I. Eberly, and P. V. Bhave, 'Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods,' Journal of the Air Waste Management Association, vol. 57, no. 2, pp. 146-154, 2007. [85] G. Hoek et al., 'Spatial variability of fine particle concentrations in three European areas,' Atmospheric Environment, vol. 36, no. 25, pp. 4077-4088, 2002. [86] A. Alastuey et al., 'Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol,' Atmospheric Environment, vol. 38, no. 30, pp. 4979-4992, 2004. [87] S. Squizzato, M. Masiol, E. Innocente, E. Pecorari, G. Rampazzo, and B. Pavoni, 'A procedure to assess local and long-range transport contributions to PM2. 5 and secondary inorganic aerosol,' Journal of Aerosol Science, vol. 46, pp. 64-76, 2012. [88] S.-C. Chang, C. C.-K. Chou, C.-C. Chan, and C.-T. Lee, 'Temporal characteristics from continuous measurements of PM2. 5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008,' Atmospheric Environment, vol. 44, no. 8, pp. 1088-1096, 2010. [89] M.-T. Cheng et al., 'Compositions and source apportionments of atmospheric aerosol during Asian dust storm and local pollution in central Taiwan,' Journal of atmospheric chemistry, vol. 61, no. 2, pp. 155-173, 2008. [90] J. Lang et al., 'Trends of PM2. 5 and chemical composition in Beijing, 2000-2015,' Aerosol and Air Quality Research, vol. 17, no. 2, pp. 412-425, 2017. [91] G. Tang et al., 'Mixing layer height and its implications for air pollution over Beijing, China,' Atmospheric Chemistry and Physics, vol. 16, no. 4, pp. 2459-2475, 2016. [92] J. Schween, A. Hirsikko, U. Löhnert, and S. Crewell, 'Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment,' Atmospheric Measurement Techniques, vol. 7, no. 11, pp. 3685-3704, 2014. [93] Y. Lin and M. Cheng, 'Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere,' Atmospheric Environment, vol. 41, no. 9, pp. 1903-1910, 2007. [94] M. Khoder, 'Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area,' Chemosphere, vol. 49, no. 6, pp. 675-684, 2002. [95] O. Lozhkina, V. Lozhkin, N. Nevmerzhitsky, D. Tarkhov, and A. Vasilyev, 'Motor transport related harmful PM2. 5 and PM10: from onroad measurements to the modelling of air pollution by neural network approach on street and urban level,' in Journal of Physics: Conference Series, 2016, vol. 772, no. 1: IOP Publishing, p. 012031. [96] M. Ketzel et al., 'Estimation and validation of PM2. 5/PM10 exhaust and non-exhaust emission factors for practical street pollution modelling,' Atmospheric Environment, vol. 41, no. 40, pp. 9370-9385, 2007. [97] F. Amato et al., 'Short-term variability of mineral dust, metals and carbon emission from road dust resuspension,' Atmospheric Environment, vol. 74, pp. 134-140, 2013. [98] C. Du et al., 'Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China,' Aerosol and Air Quality Research, vol. 13, no. 5, pp. 1598-1607, 2013. [99] K. Sellegri, J. Gourdeau, J. P. Putaud, and S. Despiau, 'Chemical composition of marine aerosol in a Mediterranean coastal zone during the FETCH experiment,' Journal of Geophysical Research: Atmospheres, vol. 106, no. D11, pp. 12023-12037, 2001. [100] P. K. Quinn, T. S. Bates, J. E. Johnson, D. S. Covert, and R. J. Charlson, 'Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean,' Journal of Geophysical Research: Atmospheres, vol. 95, no. D10, pp. 16405-16416, 1990. [101] X. Querol et al., 'Source origin of trace elements in PM from regional background, urban and industrial sites of Spain,' Atmospheric Environment, vol. 41, no. 34, pp. 7219-7231, 2007. [102] Y. I. Tsai and C.-L. Chen, 'Characterization of Asian dust storm and non-Asian dust storm PM2. 5 aerosol in southern Taiwan,' Atmospheric Environment, vol. 40, no. 25, pp. 4734-4750, 2006. [103] H. She, P.-H. Cheng, C.-S. Yuan, Z.-M. Yang, and I.-R. Ie, 'Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2. 5 surrounding industrial complexes in Southern Kaohsiung,' Aerosol and Air Quality Research, vol. 20, no. 3, pp. 557-575, 2020. [104] G. Norris, R. Duvall, S. Brown, and S. Bai, 'EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide,' Prepared for the US Environmental Protection Agency, Washington, DC, by the National Exposure Research Laboratory, Research Triangle Park, 2008. [105] E. R. Lewis, R. Lewis, K. E. Karlstrom, E. R. Lewis, and S. E. Schwartz, Sea salt aerosol production: mechanisms, methods, measurements, and models. American Geophysical Union, 2004. [106] J. Crawford, D. D. Cohen, S. D. Chambers, A. G. Williams, and A. Atanacio, 'Impact of aerosols of sea salt origin in a coastal basin: Sydney, Australia,' Atmospheric Environment, vol. 207, pp. 52-62, 2019. [107] J. V. Trueblood et al., 'The old and the new: aging of sea spray aerosol and formation of secondary marine aerosol through OH oxidation reactions,' ACS Earth and Space Chemistry, vol. 3, no. 10, pp. 2307-2314, 2019. [108] A. N. Hristov, 'Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2. 5) in the United States,' Journal of dairy science, vol. 94, no. 6, pp. 3130-3136, 2011. [109] O. Pindado and R. M. Perez, 'Source apportionment of particulate organic compounds in a rural area of Spain by positive matrix factorization,' Atmospheric Pollution Research, vol. 2, no. 4, pp. 492-505, 2011. [110] F. Amato, M. Pandolfi, M. Viana, X. Querol, A. Alastuey, and T. Moreno, 'Spatial and chemical patterns of PM10 in road dust deposited in urban environment,' Atmospheric Environment, vol. 43, no. 9, pp. 1650-1659, 2009. [111] L. Han, G. Zhuang, S. Cheng, Y. Wang, and J. Li, 'Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing,' Atmospheric Environment, vol. 41, no. 35, pp. 7485-7499, 2007. [112] P. Pant, S. J. Baker, A. Shukla, C. Maikawa, K. J. G. Pollitt, and R. M. Harrison, 'The PM10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential,' Science of the Total Environment, vol. 530, pp. 445-452, 2015. [113] Y. Chan, R. Simpson, G. McTainsh, P. Vowles, D. Cohen, and G. Bailey, 'Characterisation of chemical species in PM2. 5 and PM10 aerosols in Brisbane, Australia,' Atmospheric Environment, vol. 31, no. 22, pp. 3773-3785, 1997. [114] W. Maenhaut, J. Cafmeyer, S. Dubtsov, and X. Chi, 'Detailed mass size distributions of elements and species, and aerosol chemical mass closure during fall 1999 at Gent, Belgium,' Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 189, no. 1-4, pp. 238-242, 2002. [115] J. K. Gietl, R. Lawrence, A. J. Thorpe, and R. M. Harrison, 'Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road,' Atmospheric Environment, vol. 44, no. 2, pp. 141-146, 2010. [116] P. Wåhlin, R. Berkowicz, and F. Palmgren, 'Characterisation of traffic-generated particulate matter in Copenhagen,' Atmospheric Environment, vol. 40, no. 12, pp. 2151-2159, 2006. [117] J. Hulskotte, G. Roskam, and H. D. Van Der Gon, 'Elemental composition of current automotive braking materials and derived air emission factors,' Atmospheric environment, vol. 99, pp. 436-445, 2014. [118] F. Amato et al., 'Urban air quality: the challenge of traffic non-exhaust emissions,' Journal of hazardous materials, vol. 275, pp. 31-36, 2014. [119] F. Amato, Non-exhaust emissions: an urban air quality problem for public health; impact and mitigation measures. Academic Press, 2018. [120] E. Gramsch, I. Ormeno, G. Palma, F. Cereceda-Balic, and P. Oyola, 'Use of the light absorption coefficient to monitor elemental carbon and PM2. 5—example of Santiago de Chile,' Journal of the Air Waste Management Association, vol. 54, no. 7, pp. 799-808, 2004. [121] S. H. Cadle and P. J. Groblicki, 'An evaluation of methods for the determination of organic and elemental carbon in particulate samples,' in Particulate Carbon: Springer, 1982, pp. 89-109. [122] J. Cyrys et al., 'Comparison between different traffic-related particle indicators: elemental carbon (EC), PM 2.5 mass, and absorbance,' Journal of Exposure Science Environmental Epidemiology, vol. 13, no. 2, pp. 134-143, 2003. [123] X. Jin et al., 'Source apportionment of PM2. 5 in Beijing using positive matrix factorization,' Journal of Radioanalytical and Nuclear Chemistry, vol. 307, no. 3, pp. 2147-2154, 2016. [124] L. Qi, M. Chen, X. Ge, Y. Zhang, and B. Guo, 'Seasonal variations and sources of 17 aerosol metal elements in suburban Nanjing, China,' Atmosphere, vol. 7, no. 12, p. 153, 2016. [125] Y.-Y. Lin et al., 'Contribution of gestational exposure to ambient traffic air pollutants to fetal cord blood manganese,' Environmental research, vol. 112, pp. 1-7, 2012. [126] J. Chen, 'Characteristics of metal elements in both gasoline and engine exhaust,' National Cheng-Kung University, Tainan, Taiwan, ROC [Thesis], 2002. [127] S.-C. Hsu et al., 'Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta,' Atmospheric Environment, vol. 40, no. 28, pp. 5393-5404, 2006. [128] S. C. Hsu et al., 'Long‐range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in northern Taiwan,' Journal of Geophysical Research: Atmospheres, vol. 114, no. D14, 2009. [129] S.-C. Hsu et al., 'Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions,' Science of the Total Environment, vol. 347, no. 1-3, pp. 111-121, 2005. [130] K. He et al., 'The characteristics of PM2. 5 in Beijing, China,' Atmospheric Environment, vol. 35, no. 29, pp. 4959-4970, 2001. [131] F. Wei et al., 'Ambient concentrations and elemental compositions of PM10 and PM2. 5 in four Chinese cities,' Environmental Science Technology, vol. 33, no. 23, pp. 4188-4193, 1999. [132] K. Zhou et al., 'Formation and control of fine potassium-enriched particulates during coal combustion,' Energy fuels, vol. 24, no. 12, pp. 6266-6274, 2010. [133] J.-C. Chang, '應用正矩陣因子模式探討台北都會區細懸浮微粒元素成分來源之垂直空間變異,' 臺灣大學環境衛生研究所學位論文, pp. 1-66, 2017. [134] W.-C. Kao, '利用高時間解析度資料進行台北地區細懸浮微粒來源分析與探討該地區細懸浮微粒成份之垂直空間變異,' 臺灣大學環境衛生研究所學位論文, pp. 1-69, 2018. [135] 李建霖, '利用改良版受體模式分析都市中細懸浮微粒之污染來源與垂直貢獻比例,' 臺灣大學環境與職業健康科學研究所學位論文, pp. 1-71, 2020. [136] C.-Y. Lin et al., 'Long-range transport of aerosols and their impact on the air quality of Taiwan,' Atmospheric Environment, vol. 39, no. 33, pp. 6066-6076, 2005. [137] C.-Y. Lin et al., 'Long-range transport of Asian dust and air pollutants to Taiwan,' Terr. Atmos. Ocean. Sci, vol. 15, no. 5, pp. 759-784, 2004. [138] J. Wang et al., 'Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin,' Environmental Pollution, vol. 219, pp. 982-992, 2016. [139] W. Du et al., 'Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China,' Atmospheric Chemistry and Physics, vol. 17, no. 11, pp. 6797-6811, 2017. [140] H. T. Liao et al., 'Source apportionment of urban PM2. 5 using positive matrix factorization with vertically distributed measurements of trace elements and nonpolar organic compounds,' Atmospheric Pollution Research, vol. 12, no. 4, pp. 200-207, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80292-
dc.description.abstract細懸浮微粒(PM2.5)是一種普遍存在於空氣中的污染物。已有許多研究指出暴露到細懸浮微粒對健康有許多不良影響;此外,不同化學物種組成的細懸浮微粒及含量會導致不同的健康效應。在大型都會區為了滿足居住需求必須建造許多高樓建築,且在交通擁擠的市區也會建造高架橋來解決道路阻塞問題。然而,大多數探討空間變化的細懸浮微粒之研究只考慮了水平面向的變化,關於垂直高度之變化的研究目前非常有限。若能確定細懸浮微粒的主要來源和成分,並了解這些來源在不同高度的貢獻程度及時序上的變化,將有助於制定細懸浮微粒相關的防治政策。本研究選擇鄰近高架橋的建築作為採樣地點,此研究從2019年10月至2020年6月探討細懸浮微粒的垂直變化。採樣設備分別設置在三個不同樓層,低:2樓(6公尺高)、中:6樓(23公尺高)和高:11樓(44公尺高)。樣本採集在鐵氟龍濾紙上,採集後的樣本會進行細懸浮微粒之質量濃度、吸收係數、14種元素和7種水溶性離子的分析。為了量化暴露的來源及貢獻,使用正矩陣因子法解析物種濃度和來源分佈之間的質量守恆公式。結果顯示,在中樓層的PM2.5平均濃度最高(14.68 μg/m3),其次為低樓層(14.48 μg/m3)和高樓層(13.81 μg/m3)。在分析的物種中,二次無機性氣膠(SIA)對於細懸浮微粒的濃度有極大的貢獻,尤其硫酸鹽(SO42-)佔最大的比例。透過正矩陣因子模式解析出七種污染來源,將其統整成相似污染源排序後,衍生性氣膠相關污染來源(35%)以及道路相關污染源(24%)貢獻最高,其次為長程傳輸(22%)、海鹽飛沫(10%)、重油燃燒(9%)。與道路來源(Road source)相關的來源因子4(粉塵來源)及來源因子6(交通排放),在垂直高度變化之貢獻有所差異,而其餘污染來源並無觀察到垂直變異,顯示交通污染可能是細懸浮微粒濃度具有垂直變異的關鍵因素之一。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:03:56Z (GMT). No. of bitstreams: 1
U0001-2906202105453800.pdf: 4333252 bytes, checksum: ea5049e1ecb7f9e0729cddb590551aa2 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 vii 公式目錄 viii 符號說明 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 研究架構 5 第二章 研究方法 6 2.1 研究區域 6 2.2 採樣策略 7 2.2.1 採樣地點 7 2.2.2 採樣規劃 7 2.3 資料收集及化學分析 8 2.3.1 質量濃度 8 2.3.2 吸收係數 8 2.3.3 元素分析 9 2.3.4 離子分析 10 2.4 離子微粒之特性探討 13 2.5 逆軌跡模式 16 2.6 受體模式 17 2.6.1 正矩陣因子法 17 2.6.2 資料前處理 18 2.6.3 資料品質確定 19 2.6.4 污染源數目選擇 20 2.6.5 圖譜解釋 21 2.7 品保品管 21 2.7.1 採樣 21 2.7.2 分析 22 第三章 研究結果與討論 25 3.1 描述性統計 25 3.1.1 細懸浮微粒質量濃度 25 3.1.2 細懸浮微粒化學組成 25 3.1.3 濃度之垂直變異 26 3.1.4 濃度之時序性差異 27 3.2 細懸浮微粒之離子特性探討 29 3.3 正矩陣因子模式解析結果 30 3.3.1 輸入資料 30 3.3.2 決定污染源數目 31 3.3.3 污染源辨識 32 3.3.4 污染源貢獻與時序性差異 34 3.3.5 污染源貢獻之垂直變異 36 第四章 結論與建議 39 4.1 結論 39 4.2 研究限制與建議 40 第五章 參考文獻 62 第六章 附錄 74
dc.language.isozh-TW
dc.subject正矩陣因子法zh_TW
dc.subject來源分析zh_TW
dc.subject垂直變異zh_TW
dc.subject成分分析zh_TW
dc.subject細懸浮微粒zh_TW
dc.subjectChemical compositionen
dc.subjectPM2.5en
dc.subjectPositive Matrix Factorization (PMF)en
dc.subjectSource apportionmenten
dc.subjectVertical variationen
dc.title以無機物種探討高架道路旁建築之細懸浮微粒來源及垂直變異zh_TW
dc.titleVertical Variation of Source-Apportioned PM2.5 using Inorganic Species as Tracers at a Building near Viaducten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡詩偉(Hsin-Tsai Liu),陳佳堃(Chih-Yang Tseng)
dc.subject.keyword細懸浮微粒,正矩陣因子法,來源分析,垂直變異,成分分析,zh_TW
dc.subject.keywordPM2.5,Positive Matrix Factorization (PMF),Source apportionment,Vertical variation,Chemical composition,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202101182
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-05
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
dc.date.embargo-lift2026-07-02-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2906202105453800.pdf
  未授權公開取用
4.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved