Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80285
標題: 使用機器學習演算法預測企業財務危機
Using machine learning algorithms to predict financial distress
作者: Yung-Yu Chou
周永昱
指導教授: 石百達(Pai-Ta Shih)
關鍵字: 財務危機,機器學習,樣本配對,資料預處理,邏輯斯迴歸,支持向量機,隨機森林,K-近鄰演算法,
Financial distress,Machine learning,Sample Matching,Data Preprocessing,Logistic regression,Support vector machines,Random forest,K-Nearest Neighbor,
出版年 : 2021
學位: 碩士
摘要: 相較於過去文獻多追求財務危機預測之最佳模型或是最佳變數組合。本研究探討資料預處理對於建立財務危機預測模型之重要性。透過不同定義之產業別來進行樣本配對,產生配對樣本,以建立財務危機預測模型,比較財務危機預測模型的表現。 研究結果顯示,使用較佳的配對樣本進行訓練,可以提升模型的整體表現,且結果於不同的樣本配對比例、分類模型皆穩固。在五個衡量指標:準確率、召回率、精確率、F1-score、ROC AUC中,新產業所訓練出之模型絕大多數都異於且優於舊產業。此外,隨機森林在除精確率外,其餘的衡量指標皆為最佳的模型。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80285
DOI: 10.6342/NTU202101194
全文授權: 同意授權(限校園內公開)
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
U0001-2906202116315200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.42 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved