請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 俞松良(Sung-Liang Yu) | |
| dc.contributor.author | Yin-Chen Hsu | en |
| dc.contributor.author | 徐英誠 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:03:37Z | - |
| dc.date.available | 2022-07-01 | |
| dc.date.available | 2022-11-24T03:03:37Z | - |
| dc.date.copyright | 2021-07-07 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-05 | |
| dc.identifier.citation | 1. Lin Y, Wang X, Jin H. EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am J Cancer Res. 2014;4(5):411-435. 2. Doebele RC, Davis LE, Vaishnavi A, et al. An Oncogenic NTRK Fusion in a Patient with Soft-Tissue Sarcoma with Response to the Tropomyosin-Related Kinase Inhibitor LOXO-101. Cancer Discov. 2015;5(10):1049-1057. 3. Tetsumoto S, Kijima T, Morii E, et al. Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement in congenital pulmonary airway malformation. Clin Lung Cancer. 2013;14(4):457-460. 4. Baran Y, Saydam G. Cumulative clinical experience from a decade of use: imatinib as first-line treatment of chronic myeloid leukemia. J Blood Med. 2012;3:139-150. 5. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278-287. 6. Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462(7276):1070-1074. 7. Boguski MS, Arnaout R, Hill C. Customized care 2020: how medical sequencing and network biology will enable personalized medicine. F1000 Biol Rep. 2009;1:73. 8. Kahvejian A, Quackenbush J, Thompson JF. What would you do if you could sequence everything? Nature Biotechnology. 2008;26:1125. 9. Drmanac R, Sparks AB, Callow MJ, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327(5961):78-81. 10. Service RF. Gene sequencing. The race for the $1000 genome. Science. 2006;311(5767):1544-1546. 11. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021;71(3):209-249. 12. Silverberg E. Cancer statistics, 1985. CA Cancer J Clin. 1985;35(1):19-35. 13. Singh H, Nugent Z, Demers AA, Kliewer EV, Mahmud SM, Bernstein CN. The reduction in colorectal cancer mortality after colonoscopy varies by site of the cancer. Gastroenterology. 2010;139(4):1128-1137. 14. Kahi CJ, Imperiale TF, Juliar BE, Rex DK. Effect of screening colonoscopy on colorectal cancer incidence and mortality. Clin Gastroenterol Hepatol. 2009;7(7):770-775; quiz 711. 15. Song EM, Park B, Ha CA, et al. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model. Scientific reports. 2020;10(1):30. 16. Chang LC, Chiu HM, Ho BC, et al. Copy Number Alterations of Depressed Colorectal Neoplasm Predict the Survival and Response to Oxaliplatin in Proximal Colon Cancer. Cancers (Basel). 2020;12(6). 17. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487. 18. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498. 19. Martincorena I, Fowler JC, Wabik A, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362(6417):911-917. 20. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472-1478. 21. Martincorena I, Raine KM, Gerstung M, et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell. 2018;173(7):1823. 22. Coombs CC, Gillis NK, Tan X, et al. Identification of Clonal Hematopoiesis Mutations in Solid Tumor Patients Undergoing Unpaired Next-Generation Sequencing Assays. Clin Cancer Res. 2018;24(23):5918-5924. 23. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017;377(2):111-121. 24. Severson EA, Riedlinger GM, Connelly CF, et al. Detection of clonal hematopoiesis of indeterminate potential in clinical sequencing of solid tumor specimens. Blood. 2018;131(22):2501-2505. 25. Challen GA, Goodell MA. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood. 2020;136(14):1590-1598. 26. Gillis NK, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2017;18(1):112-121. 27. Ptashkin RN, Mandelker DL, Coombs CC, et al. Prevalence of Clonal Hematopoiesis Mutations in Tumor-Only Clinical Genomic Profiling of Solid Tumors. JAMA Oncol. 2018;4(11):1589-1593. 28. Priestley P, Baber J, Lolkema MP, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature. 2019;575(7781):210-216. 29. Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018;24(7):1015-1023. 30. Abelson S, Collord G, Ng SWK, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559(7714):400-404. 31. Bolton KL, Ptashkin RN, Gao T, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. 2020;52(11):1219-1226. 32. Coombs CC, Zehir A, Devlin SM, et al. Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell. 2017;21(3):374-382.e374. 33. Wong WH, Bhatt S, Trinkaus K, et al. Engraftment of rare, pathogenic donor hematopoietic mutations in unrelated hematopoietic stem cell transplantation. Sci Transl Med. 2020;12(526). 34. Crowgey EL, Mahajan N, Wong WH, et al. Error-corrected sequencing strategies enable comprehensive detection of leukemic mutations relevant for diagnosis and minimal residual disease monitoring. BMC Medical Genomics. 2020;13(1):32. 35. Abbosh C, Swanton C, Birkbak NJ. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann Oncol. 2019;30(3):358-359. 36. Steliarova-Foucher E, Colombet M, Ries LAG, et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-731. 37. Iacobucci I, Mullighan CG. Genetic Basis of Acute Lymphoblastic Leukemia. J Clin Oncol. 2017;35(9):975-983. 38. Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nature reviews Clinical oncology. 2015;12(6):344-357. 39. Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125(26):3977-3987. 40. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541-1552. 41. Harvey RC, Mullighan CG, Wang X, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116(23):4874-4884. 42. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood. 2018;132(8):815-824. 43. Zaliova M, Stuchly J, Winkowska L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104(7):1396-1406. 44. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005-1015. 45. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-166. 46. Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524-2539. 47. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125-134. 48. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood. 2017;129(25):3352-3361. 49. Díaz-Gay M, Vila-Casadesús M, Franch-Expósito S, Hernández-Illán E, Lozano JJ, Castellví-Bel S. Mutational Signatures in Cancer (MuSiCa): a web application to implement mutational signatures analysis in cancer samples. BMC Bioinformatics. 2018;19(1):224. 50. Liang DC, Yang CP, Lin DT, et al. Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):397-405. 51. Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307. 52. Pui CH, Nichols KE, Yang JJ. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nature reviews Clinical oncology. 2019;16(4):227-240. 53. Yu CH, Lin TK, Jou ST, et al. MLPA and DNA index improve the molecular diagnosis of childhood B-cell acute lymphoblastic leukemia. Scientific reports. 2020;10(1):11501. 54. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high risk B-ALL: a study from the Children's Oncology Group. Blood. 2017. 55. McLeod C, Gout AM, Zhou X, et al. St. Jude Cloud: A Pediatric Cancer Genomic Data-Sharing Ecosystem. Cancer Discov. 2021;11(5):1082-1099. 56. Bick AG, Weinstock JS, Nandakumar SK, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020. 57. Chen M, Xu R, Rai A, et al. Distinct shed microvesicle and exosome microRNA signatures reveal diagnostic markers for colorectal cancer. PLoS One. 2019;14(1):e0210003. 58. Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N. Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer. Sci Rep. 2019;9(1):16497. 59. Zheng X, Xu K, Zhou B, et al. A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 2020;9(1):1750202. 60. Burns MB, Montassier E, Abrahante J, et al. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet. 2018;14(6):e1007376. 61. Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10(11):766. 62. Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol. 2017;32:43-53. 63. Wan N, Weinberg D, Liu TY, et al. Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer. 2019;19(1):832. 64. Aravanis AM, Lee M, Klausner RD. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell. 2017;168(4):571-574. 65. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra224. 66. Terasaki M, Mima M, Kudoh S, et al. Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells. Oncol Rep. 2018;40(1):414-424. 67. Sonoda H, Kohnoe S, Yamazato T, et al. Colorectal cancer screening with odour material by canine scent detection. Gut. 2011;60(6):814-819. 68. Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403). 69. Berg KCG, Eide PW, Eilertsen IA, et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol Cancer. 2017;16(1):116. 70. Duan X, Wang K, Ke J, Lan P, Gao F, Wu X. Multiomics-Based Colorectal Cancer Molecular Subtyping Using Local Scaling Network Fusion. J Comput Biol. 2020;27(8):1295-1302. 71. Kel A, Boyarskikh U, Stegmaier P, et al. Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics. 2019;20(Suppl 4):119. 72. Zhou Y, Cheng X, Zhang F, et al. Integrated multi-omics data analyses for exploring the co-occurring and mutually exclusive gene alteration events in colorectal cancer. Hum Mutat. 2020;41(9):1588-1599. 73. Ogata-Kawata H, Izumiya M, Kurioka D, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921. 74. Gao T, Ptashkin R, Bolton KL, et al. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nature communications. 2021;12(1):338. 75. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nature communications. 2016;7:12484. 76. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017;7(8):818-831. 77. Sinicrope FA, Shi Q, Smyrk TC, et al. Molecular markers identify subtypes of stage III colon cancer associated with patient outcomes. Gastroenterology. 2015;148(1):88-99. 78. Phipps AI, Limburg PJ, Baron JA, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology. 2015;148(1):77-87.e72. 79. Temko D, Van Gool IC, Rayner E, et al. Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response. J Pathol. 2018;245(3):283-296. 80. Castellsagué E, Li R, Aligue R, et al. Novel POLE pathogenic germline variant in a family with multiple primary tumors results in distinct mutational signatures. Hum Mutat. 2019;40(1):36-41. 81. Sun J, Wang C, Zhang Y, et al. Genomic signatures reveal DNA damage response deficiency in colorectal cancer brain metastases. Nat Commun. 2019;10(1):3190. 82. Dolcetti R, Viel A, Doglioni C, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154(6):1805-1813. 83. Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509-2520. 84. Chen YY, Chung JG, Wu HC, et al. Aristolochic acid suppresses DNA repair and triggers oxidative DNA damage in human kidney proximal tubular cells. Oncol Rep. 2010;24(1):141-153. 85. Ng AWT, Poon SL, Huang MN, et al. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med. 2017;9(412). 86. Chiaretti S, Messina M, Della Starza I, et al. Philadelphia-like acute lymphoblastic leukemia is associated with minimal residual disease persistence and poor outcome. First report of the minimal residual disease-oriented GIMEMA LAL1913. Haematologica. 2021;106(6):1559-1568. 87. Herold T, Schneider S, Metzeler KH, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica. 2017;102(1):130-138. 88. Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572-581. 89. Liu YF, Wang BY, Zhang WN, et al. Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. EBioMedicine. 2016;8:173-183. 90. Imamura T, Kiyokawa N, Kato M, et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J. 2016;6(5):e419. 91. Harvey RC, Tasian SK. Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv. 2020;4(1):218-228. 92. Roberts KG. The biology of Philadelphia chromosome-like ALL. Best Pract Res Clin Haematol. 2017;30(3):212-221. 93. Yeoh AEJ, Li Z, Lee S, et al. RNA Sequencing in Childhood B-Lymphoblastic Leukemia Improves Molecular and Risk Assignment. Blood. 2019;134(Supplement_1):651-651. 94. Li JF, Dai YT, Lilljebjörn H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A. 2018;115(50):E11711-e11720. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80271 | - |
| dc.description.abstract | 現今癌症在臨床上面臨的最大挑戰是對於腫瘤縱向變化的過程尚有許多未瞭解之處,包含細胞如何從良性型態發展成惡性型態?腫瘤細胞轉移和產生耐藥性的機制?在目前癌症的臨床分析中,腫瘤分子核酸變異分析已逐步發展成臨床癌症分類及伴隨式診斷的依據。隨著分子生物技術的進步,次世代定序技術(NGS)在現今癌症研究中扮演著重要的角色。然而,NGS在許多癌症診斷的需求上尚未能提供滿足,而主要的瓶頸是在NGS平台的選擇及測試分析流程建立過程中最適化及標準化的臨床要求。為了增進臨床診斷的進步,我們期望利用新一代NGS 的技術,逐步開發各式癌症診斷的應用方案。在目前的研究中,我們就實體腫瘤的早期診斷和白血病檢測建立了分析流程,同時在臨床醫生的合作協助下建立了本土性的臨床資料。經過這些年的研究過程,我們分別在實體腫瘤及白血病上建立了(i)一個基於液體活檢為基礎的早期大腸直腸惡性腫瘤診斷模型,其AUC 為 0.988; (ii)一種測試算法來鑑定兒童B細胞急性淋巴細胞白血病(B-ALL)中的激酶基因融合變異,發現台灣費城染色體陰性B-ALL的發生率較歐美地區為低,同時發現了一個新的基因亞型變異。 通過這種策略及研究成果,我們希望能替台灣的癌症診斷提供本土化的參考依據。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:03:37Z (GMT). No. of bitstreams: 1 U0001-0207202115094100.pdf: 3580571 bytes, checksum: e1a81ed03f29276beaf7b406b0d8565f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 ............................................................... I 致謝 .................................................................... II 中文摘要 ................................................................ III Abstract ................................................................ IV Content .................................................................. V List of Tables .............................................................. VI List of Figures ............................................................ VII Chapter I: Introduction ...................................................... 1 1.1 Overview of unmet need in cancer diagnosis ............................... 1 1.2 Background of cancer diagnosis in early colorectal neoplasm screening .... 2 1.3 Background of cancer diagnosis in childhood B-ALL ..................... 7 1.4 Objective of this study .................................................10 1.5 Motivation and hypothesis ............................................... 10 Chapter II: Materials and methods........................................... 12 2.1 Material and methods for early colorectal neoplasm screening ... 12 2.2 Material and methods for fusion gene analysis in childhood B-ALL ........ 15 Chapter III: Results ........................................................ 21 3.1 Results of early colorectal neoplasm screening .......................... 21 3.2 Results of fusion gene analysis in childhood B-ALL .................... 26 Chapter IV: Discussion ..................................................... 30 Chapter V: Conclusion and perspective ....................................... 39 Tables....................................................................... 41 Figures ..................................................................... 48 References .................................................................. 56 | |
| dc.language.iso | en | |
| dc.subject | 次世代定序技術 | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 癌症早期篩檢 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 急性淋巴性白血病 | zh_TW |
| dc.subject | early cancer screening | en |
| dc.subject | next generation sequencing | en |
| dc.subject | colorectal Cancer | en |
| dc.subject | machine learning | en |
| dc.subject | acute lymphoblastic leukemia | en |
| dc.title | 開發次世代定序技術於癌症診斷之應用 | zh_TW |
| dc.title | Developing the application of next-generation sequencing technology in cancer diagnosis | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-2478-9037 | |
| dc.contributor.oralexamcommittee | 林亮音(Hsin-Tsai Liu),邱瀚模(Chih-Yang Tseng),楊永立,陳璿宇,蘇剛毅 | |
| dc.subject.keyword | 大腸直腸癌,急性淋巴性白血病,癌症早期篩檢,機器學習,次世代定序技術, | zh_TW |
| dc.subject.keyword | colorectal Cancer,acute lymphoblastic leukemia,early cancer screening,machine learning,next generation sequencing, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU202101235 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫事技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0207202115094100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
