Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorTzu-Jou Chenen
dc.contributor.author陳子柔zh_TW
dc.date.accessioned2022-11-24T03:02:52Z-
dc.date.available2021-07-23
dc.date.available2022-11-24T03:02:52Z-
dc.date.copyright2021-07-23
dc.date.issued2021
dc.date.submitted2021-07-11
dc.identifier.citationAly, R.M. 2020. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 7:8. doi:10.21037/sci-2020-001 Atala, A. L. R. Handbook of Stem Cells. Academic Press. 2012. p. 452. Averill, M. M., Barnhart, S., Becker, L., Li, X., Heinecke, J. W., and Leboeuf, R. C. 2011. S100A9 differentially modifies phenotypic states of neutrophils, macrophages, and dendritic cells: implications for atherosclerosis and adipose tissue inflammation. Circulation 123(11): 1216–1226. doi: 10.1161/circulationaha.110.985523 Basu, A., Munir, S., and Mulaw, M. A. 2018. A Novel S100A8/A9 Induced Fingerprint of Mesenchymal Stem Cells associated with Enhanced Wound Healing. Sci. Rep. 8(1):6205. doi:10.1038/s41598-018-24425-9 Basu, A., Kligman, L. H., Samulewicz, S. J. and Howe, C. C. 2001. Impaired wound healing in mice deficient in a matricellular protein SPARC. BMC Cell Biol. 2, 15. doi: 10.1186/1471-2121-2-15 Betts, J. Gordon. Anatomy physiology. Houston, Texas : OpenStax College, Rice University. 2013. pp. 787–846. Boyd, J. H., Kan, B., Roberts, H., Wang, Y., and Walley, K. R. 2008. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ. Res. 102, 1239–1246. doi: 10.1161/circresaha.107.167544 Bresnick, A. R., Weber, D. J., and Zimmer, D. B. 2015. S100 proteins in cancer. Nat. Rev. Cancer. 15, 96–109. doi: 10.1038/nrc3893 Buga, A. M. 2012. Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS One 7, e50985. doi: 10.1371/journal.pone.0050985 Bulati, M., Miceli, V., Gallo, A., Amico, G., Carcione, C., Pampalone, M., and Conaldi, P.G. 2020. The immunomodulatory properties of the human amnion-derived mesenchymal stromal/stem cells are induced by INF-γ produced by activated lymphomonocytes and are mediated by cell-to-cell contact and soluble factors. Front. Immunol. 11:54. doi: 10.3389/fimmu.2020.00054 Cai, Z., Xie, Q., and Hu, T. 2020. S100A8/A9 in Myocardial Infarction: A Promising Biomarker and Therapeutic Target. Front Cell Dev. Biol. 8:603902. doi:10.3389/fcell.2020.603902 Cal, S. 2005. Human polyserase-2, a novel enzyme with three tandem serine protease domains in a single polypeptide chain. J. Biol. Chem. 280, 1953–1961. doi: 10.1074/jbc.M409139200 Cecie, S., Christine, E., and Lisa, S. Biology: Today and Tomorrow With Physiology. Wadsworth Publishing. 2019. pp. 283-349. Chong, J. J., Yang, X., Don, C. W., Minami E, Liu, Y. W., Weyers, J. J., Mahoney, W. M., Van Biber, B., Cook, S. M., Palpant, N. J., Gantz, J. A., Fugate, J. A., Muskheli, V., Gough, G. M., Vogel, K. W., Astley, C. A., Hotchkiss, C. E., Baldessari, A., Pabon, L., Reinecke, H., Gill, E. A., Nelson, V., Kiem, H. P., Laflamme, M. A., and Murry, C. E. 2014. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273-7. doi: 10.1038/nature13233 Collet, J. P., Thiele, H., and Barbato, E. 2020. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 32(23):2999-3054. doi: 10.1093/eurheartj/ehaa575 Cominelli, A. 2014. Matrix metalloproteinase-27 is expressed in CD1631/CD2061 M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol. Hum. Repro. 20(8):767-75. doi: 10.1093/molehr/gau034 Cresci, G. A. 2015. Alternative complement pathway component Factor D contributes to efficient clearance of tissue debris following acute CCl4-induced injury. Mol. Immunol. 64(1):9-17. doi: 10.1016/j.molimm.2014.10.017 Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., and Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315-7. doi: 10.1080/14653240600855905 Donato, R. 2003. Intracellular and extracellular roles of S100 proteins. Microsc. Res. Tech. 60:540–551. doi: 10.1002/jemt.10296 Donato, R., Cannon, B. R., Sorci, G., Riuzzi, F., Hsu, K., and Weber, D. J. 2013. Functions of S100 proteins. Curr. Mol. 13(1):24-57. PMCID: PMC3707951 Eberhard, Y., Ortiz, S., Ruiz Lascano, A., Kuznitzky, R. and Serra, H. M. 2004. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants. BMC Immunol. 26: 5-7. doi: 10.1186/1471-2172-5-7 Ehrchen, J. M., Sunderkotter, C., Foell, D., Vogl, T., and Roth, J. 2009. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 86: 557–566. doi: 10.1189/jlb.1008647 Fernandes, S., Chong, J. J., Paige, S. L., Iwata, M., Torok-Storb, B., Keller, G., Reinecke, H., and Murry, C. E. 2015. Comparison of human embryonic stem cell-derived cardiomyocytes, cardiovascular progenitors, and bone marrow mononuclear cells for cardiac repair. Stem Cell Reports 5(5): 753–762. doi: 10.1016/j.stemcr.2015.09.011 Ferreira, L. Stem Cells: A Brief History and Outlook - Science in the News. WordPress. 2019. pp. 12-27. Golpanian, S., Wolf, A., Hatzistergos, K. E., and Hare, J. M. 2016. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol. Rev. 96(3):1127-1168. doi:10.1152/physrev.00019.2015 Gonzalez, L. L., Garrie, K., and Turner, M. D. 2020. Role of S100 proteins in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 1867:118677. doi: 10.1016/j.bbamcr.2020.118677 Grimbaldeston, M. A., Geczy, C. L., Tedla, N., Finlay-Jones, J. J., and Hart, P. H. 2003. S100A8 induction in keratinocytes by ultraviolet A irradiation is dependent on reactive oxygen intermediates. J. Invest. Dermatol. 121,1168–1174. doi: 10.1046/j.1523-1747.2003.12561.x Hall, J. Guyton and Hall textbook of medical physiology 12th ed. Philadelphia, Pa.: Saunders/Elsevier. 2011. pp. 579-613. Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., Mazhari, R., Boyle, A. J., Zambrano, J. P., Rodriguez, J. E., Dulce, R., Pattany, P. M., Valdes, D., Revilla, C., Heldman, A. W., McNiece, I., and Hare, J. M. 2010. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ. Res. 107(7):913-22. doi: 10.1161/CIRCRESAHA Hessian, P. A., Edgeworth, J., and Hogg, N. 1993. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J. Leukoc. Biol. 53, 197–204. doi: 10.1002/jlb.53.2.197 Hobbs, J. A., May, R., Tanousis, K., McNeill, E., Mathies, M., and Gebhardt, C. 2003. Myeloid cell function in MRP-14 (S100A9) null mice. Mol. Cell. Biol. 23, 2564–2576. doi: 10.1128/mcb.23.7.2564-2576.2003 Inaba, H., Hokamura, K., Nakano, K., Nomura, R., Katayama, K., and Nakajima, A. 2009. Upregulation of S100 calcium-binding protein A9 is required for induction of smooth muscle cell proliferation by a periodontal pathogen. FEBS Lett. 583, 128–134. doi: 10.1016/j.febslet.2008.11.036 Ingersoll, M. A., Spanbroek, R., Lottaz, C., Gautier, E. L., Frankenberger, M., and Hoffmann, R. 2010. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115(3):e10-9. doi: 10.1182/blood-2009-07-235028 Jiang, D. 2016. Suppression of neutrophil-mediated tissue damage - A novel skill of mesenchymal stem cells. Stem Cells 34(9): 2393–406. doi: 10.1002/stem.2417 Karantalis, V., Suncion-Loescher, V. Y., Bagno, L., Golpanian, S., Wolf, A., Sanina, C., Premer, C., Kanelidis, A. J., McCall, F., Wang, B., Balkan, W., Rodriguez, J., Rosado, M., Morales, A., Hatzistergos, K., Natsumeda, M., Margitich, I., Schulman, I. H., Gomes, S. A., Mushtaq, M., DiFede, D. L., Fishman, J. E., Pattany, P., Zambrano, J. P., Heldman, A. W., and Hare, J. M. 2015. Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. J. Am. Coll. Cardiol. 66(18):1990-1999. doi: 10.1016/j.jacc.2015.08.879 Keith, L. M., Arthur, F. D., and Anne, M. R. Clinically Oriented Anatomy. Wolters Kluwel Health/Lippincott Williams Wilkins. 2017. pp. 105-167. Kim, P. J., Mahmoudi, M., Ge, X., Matsuura, Y., Toma, I., Metzler, S., Kooreman, N. G., Ramunas, J., Holbrook, C., and McConnell, M. V., 2015. Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ. Res. 116: e40–e50. doi: 10.1161/CIRCRESAHA.116.304668 Kim, S. W., Zhang, H. Z., Kim, C. E., Kim, J. M., and Kim, M. H. 2013. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model. Int. J. Cardiol. 168:1062–1069. doi: 10.1016/j.ijcard.2012.11.003 Landers-Ramos, R. Q., Sapp, R. M., VandeWater, E., Macko, J., Robinson, S., and Wang, Y. 2017. Investigating the extremes of the continuum of paracrine functions in CD34-/CD31+ CACs across diverse populations. Am. J. Physiol. Heart Circ. Physiol. 312(1):H162-H172. doi: 10.1152/ajpheart.00342.2016 Liu, H. O., Honmou, K., Harada, K., Nakamura, K., Houkin, H., Hamada, and Kocsis J.D. 2006. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia brain, 129(10):2734-45. doi: 10.1093/brain/awl207. Lesniak, W. 2011. Epigenetic regulation of S100 protein expression. Clin. Epigenetics. 2: 77–83. doi: 10.1007/s13148-011-0023-9 Lindsey, M. L., Bolli, R., and Canty, J. M. 2017. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314(4):H812-H838. doi:10.1152/ajpheart.00335 Liu, Q. W., Huang, Q. M., and Wu, H. Y. 2021. Characteristics and therapeutic potential of human amnion-derived stem cells. Int. J. Mol. Sci. 22(2):970. doi:10.3390/ijms22020970 Luo, R., Lu, Y., Liu, J., Cheng, J., and Chen, Y. 2019. Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother. 109:2022-2034. doi: 10.1016/j.biopha.2018.11.068 Manitz, M. P., Horst, B., Seeliger, S., Strey, A., Skryabin, B. V., and Gunzer, M. 2003. Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol. Cell. Biol. 23: 1034–1043. doi: 10.1128/mcb.23.3.1034-1043.2003 Marenholz, I., Heizmann, C. W., and Fritz, G. 2004. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem. Biophys. Res. Commun. 322: 1111–1122. doi: 10.1016/j.bbrc.2004.07.096 Moore, B. W. 1965. A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun. 19: 739–744. doi: 10.1016/0006-291x(65)90320-7 Naseroleslami, M., Aboutaleb, N., and Mokhtari, B. 2020. Amniotic membrane mesenchymal stem cells labeled by iron oxide nanoparticles exert cardioprotective effects against isoproterenol (ISO)-induced myocardial damage by targeting inflammatory MAPK/NF-κB pathway. Drug Deliv. Transl. Res. 11:242–254. doi: 10.1007/s13346-020-00788-3 Nasseri Maleki, S., Aboutaleb, N., Nazarinia, D., Allahverdi Beik, S., Qolamian, A., and Nobakht, M. 2019. Conditioned medium obtained from human amniotic membrane-derived mesenchymal stem cell attenuates heart failure injury in rats. Iran. J. Basic Med. Sci. 22:1253–1258. doi: 10.22038/ijbms.2019.36617.8722 Netea, M. G. 2008. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc. Natl. Acad. Sci. USA. 105(9):3515-20. doi: 10.1073/pnas.0712381105 Nitahara-Kasahara, Y., Kuraoka, M., and Oda, Y. 2021. Enhanced cell survival and therapeutic benefits of IL-10-expressing multipotent mesenchymal stromal cells for muscular dystrophy. Stem Cell Res. Ther. 12: 105. doi: 10.1186/s13287-021-02168-1 Nosbaum, A. 2016. Cutting edge: regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196(5):2010-4. doi: 10.4049/jimmunol.1502139 Odink, K., Cerletti, N., Bruggen, J., Clerc, R. G., Tarcsay, L., and Zwadlo, G. 1987. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330: 80–82. doi: 10.1038/330080a0 Ostádal, B., Ostádalová, I., Kolár, F., Charvátová, Z., and Netuka, I. 2009. Ontogenetic development of cardiac tolerance to oxygen deprivation–possible mechanisms. Physiol. Res. 2: S1-12. doi: 10.33549/physiolres.931920 Paterson, M. A., Horvath, A. J., Pike, R. N. and Coughlin, P. B. 2007. Molecular characterization of centerin, a germinal centre cell serpin. Biochem. J. 405(3):489-94. doi: 10.1042/BJ20070174 Petersen, B., Wolf, M., Austermann, J., van Lent, P., Foell, D., and Ahlmann, M. 2013. The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J. 32: 100–111. doi: 10.1038/emboj.2012.309 Phibbs, B. The human heart: a basic guide to heart disease 2nd. Philadelphia: Lippincott Williams Wilkins. 2007. pp. 134-207. Premer, C., Blum, A., Bellio, M., Schulman, I. H., Hurwitz, B., Parker, M., Dermarkarian, C., DiFede, D. L., Balkan, W., and Hare, J. M. 2015. Allogeneic mesenchymal stem cells restore endothelial function in heart failure by stimulating endothelial progenitor cells. EBioMedicine 2(5):467-75. doi: 10.1016/j.ebiom.2015.03.020 Pruenster, M., Kurz, A. R., Chung, K. J., Cao-Ehlker, X., Bieber, S., and Nussbaum, C. F. 2015. Extracellular MRP8/14 is a regulator of beta2 integrin-dependent neutrophil slow rolling and adhesion. Nat. Commun. 6:6915. doi: 10.1038/ncomms7915 Rahimi, F., Hsu, K., Endoh, Y., and Geczy, C. L. 2005. FGF-2, IL-1beta and TGF-beta regulate fibroblast expression of S100A8. FEBS J. 272: 2811–2827. doi: 10.1111/j.1742-4658.2005.04703.x Razavi Tousi, S. M. T., Faghihi, M., Nobakht, M., Molazem, M., Kalantari, E., Darbandi Azar, A., and Aboutaleb, N. 2016. Improvement of heart failure by human amniotic mesenchymal stromal cell transplantation in rats. J. Tehran Heart Cent. 11:123–138. PMCID: PMC5148815 Reddy, K., Khaliq, A., and Henning, R. J. 2015. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J. Cardiol. 7(5):243-276. doi:10.4330/wjc.v7.i5.243 Redpath, S. A. 2013. ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur. J. Immunol. 43: 705–715. doi: 10.1002/eji.201242794 Riegler, J., Tiburcy, M., Ebert, A., Tzatzalos, E., Raaz, U., Abilez, O. J., Shen, Q., Kooreman, N. G., Neofytou, E., Chen, V. C., Wang, M., Meyer, T., Tsao, P. S., Connolly, A. J., Couture, L. A., Gold, J. D., Zimmermann, W. H., and Wu, J. C. 2015. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117(8):720-30. doi: 10.1161/CIRCRESAHA.115.306985 Sagaradze, G., Grigorieva, O., Nimiritsky, P., Basalova, N., Kalinina, N., Akopyan, Z., and Efimenko, A. 2019. Conditioned medium from human mesenchymal stromal cells: towards the clinical translation. Int. J. Mol. Sci. 20(7):1656. doi: 10.3390/ijms20071656 Sage, E. H. 1997. Terms of attachment: SPARC and tumorigenesis. Nat. Med. 3: 144–146. doi: 10.1038/nm0297-144 Santamaria-Kisiel, L., Rintala-Dempsey, A. C., and Shaw, G. S. 2006. Calcium-dependent and -independent interactions of the S100 protein family. Biochem. J. 396: 201–214. doi: 10.1042/bj20060195 Sasaki, M. 2008. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. 180(4):2581-7. doi: 10.4049/jimmunol.180.4.2581 Schafer, B. W., and Heizmann, C. W. 1996. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21: 134–140. doi: 10.1016/s0968-0004(96)80167-8 Schiopu, A., and Cotoi, O. S. 2013. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm. 2013:828354. doi: 10.1155/2013/828354 Sharir, R., J. Semo, S. Shimoni, T. Ben-Mordechai, N. Landa-Rouben, S. Maysel-Auslender, A. Shaish, M. Entin-Meer, G. Keren, and J. George. 2014. Experimental myocardial infarction induces altered regulatory T cell hemostasis, and adoptive transfer attenuates subsequent remodeling. PLoS One 9: e113653. doi: 10.1371/journal.pone.0113653 Shen, C. 2015. Establishment, characterization, and application of pAcr-SP-NTP-EGFP transgenic mice in visualizing the oviduct-migrating ability of sperm from Prss37-null mice. Acta. Biochim. Biophys. Sin. 47(6):466-73. doi: 10.1093/abbs/gmv031 Sindrilaru, A. 2011. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121(3): 985–997. doi: 10.1172/JCI44490 Sunahori, K., Yamamura, M., Yamana, J., Takasugi, K., Kawashima, M., and Yamamoto, H. 2006. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res. Ther. 8(3):R69. doi: 10.1186/ar1939 Yin, T., He, S., Su, C., Chen, X., Zhang, D., Wan, Y., Ye, T., Shen, G., Wang, Y., Shi, H., Yang, L., and Wei, Y.. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Mol. Med. Rep. 12(4):5093-9. doi: 10.3892/mmr.2015.4089 Takov, K., He, Z., Johnston, H. E., Timms, J. F., Guillot, P. V., Yellon, D. M., and Davidson, S. M. 2020. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res. Cardiol. 115:26. doi: 10.1007/s00395-020-0785-3 Tashima, T. 2015. Osteomodulin regulates diameter and alters the shape of collagen fibrils. Biochem. Biophys. Res. Commun. 463(3): 292–6. doi: 10.1016/j.bbrc.2015.05.053 Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., and White, H. D. 2020. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 60(16):1581-98. doi: 10.1016/j.jacc.2012.08.001 Thygesen, K., Mair, J., Katus, H., Plebani, M., Venge, P., Collinson, P., Lindahl, B., Giannitsis, E., Hasin, Y., Galvani, M. 2010. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur. Heart J. 31:2197–2204. doi: 10.1093/eurheartj/ehq251 Timmers, L., Lim, S. K., Arslan, F., Armstrong, J. S., Hoefer, I. E., Doevendans, P. A., Piek, J. J., El Oakley, R. M., Choo, A., Lee, C. N., Pasterkamp, G., and Kleijn, D. P. 2007. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 1(2):129-37. doi: 10.1016/j.scr.2008.02.002 Urban, C. F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., and Nacken, W. 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5:e1000639. doi: 10.1371/journal.ppat.1000639 Vieira, P. 2004. ICOS-mediated signaling regulates cytokine production by human T cells and provides a unique signal to selectively control the clonal expansion of Th2 helper cells. Eur. J. Immunol. 34(5): 1282–90. doi: 10.1002/eji.200324417 Voganatsi, A., Panyutich, A., Miyasaki, K. T., and Murthy, R. K. 2001. Mechanism of extracellular release of human neutrophil calprotectin complex. J. Leukoc. Biol. 70: 130–134. PMID: 11435495 Vogl, T., Leukert, N., Barczyk, K., Strupat, K., and Roth, J. 2006. Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim. Biophys. Acta. 1763: 1298–1306. doi: 10.1016/j.bbamcr.2006.08.028 Wang, H. Y., Wang, Y., and Yin, D. 2020. Percutaneous coronary intervention complexity and risk of adverse events in relation to high bleeding risk among patients receiving drug-eluting stents: insights from a large single-center cohort study. J. Interv. Cardiol. 2020:2985435. doi: 10.1155/2020/2985435 Wang, S., Song, R., Wang, Z., Jing, Z., Wang, S., and Ma, J. 2018. S100A8/A9 in inflammation. Front. Immunol. 9:1298. doi: 10.3389/fimmu.2018.01298 Wei, X., Sun, G., Zhao, X., Wu, Q., Chen, L., Xu, Y., Pang, X., and Qi, G. 2019. Human amnion mesenchymal stem cells attenuate atherosclerosis by modulating macrophage function to reduce immune response. Int. J. Mol. Med. 44:1425–1435. doi: 10.3892/ijmm.2019.4286 Wong, G. W. 2001. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells. J. Biol. Chem. 276: 49169–49182. doi: 10.1074/jbc.M108677200 Ye, L., Chang, Y. H., Xiong, Q., Zhang, P., Zhang, L., Somasundaram, P., Lepley, M., Swingen, C., Su, L., Wendel, J. S., Guo, J., Jang, A., Rosenbush, D., Greder, L., Dutton, J. R., Zhang, J., Kamp, T. J., Kaufman, D. S., Ge, Y., and Zhang, J. 2014. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 15(6):750-61. doi: 10.1016/j.stem.2014.11.009 Yoshinaga, S. K. 1999. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402: 827–832. doi: 10.1038/45582 Zakrzewski, W., Dobrzyński, M., and Szymonowicz, M. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10: 68. doi: 10.1186/s13287-019-1165-5 Zhang, S., Zhou, H., Zhuang, X., 2019. Critical appraisal of guidelines for coronary artery disease on dual antiplatelet therapy: More consensus than controversies. Clin. Cardiol. 42(12):1170-1180. doi: 10.1002/clc.23275 Zimmer, D. B., Eubanks, J. O., Ramakrishnan, D., and Criscitiello, M. F. 2013. Evolution of the S100 family of calcium sensor proteins. Cell Calcium 53: 170–179. doi: 10.1016/j.ceca.2012.11.006
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80227-
dc.description.abstract"心血管疾病是造成全球人口死亡之主要疾病之一,其中又以心肌梗塞占多數,在冠狀動脈阻塞後,心臟組織缺氧導致心肌細胞及心臟成纖維細胞受損,進而引發炎症及心臟重塑,將使心臟增加10%至35%之纖維組織,可能導致心臟功能受損、心律不整及收縮障礙,甚至心臟衰竭,因此探討心肌梗塞(myocardial infarction, MI)後如何維持心臟功能是刻不容緩的重要議題。 近年來許多研究開始關注細胞受損後所釋放之危險相關分子模型(danger associated molecular patterns, DAMPs)之訊息傳遞與調控,DAMPs包含HMGB1、S100A1/A8/A9及IL-1α等,具有活化常駐型巨噬細胞及增加內皮細胞通透性功能,其可招募嗜中性球及單核球使發炎反應加劇,活化成纖維細胞使其增生並累積細胞外基質。前人研究發現以S100A8/A9蛋白質預處理之人類間葉幹細胞(human mesenchymal stem cell, hMSC)可加速傷口癒合、降低疤痕組織,並對心臟具有保護作用。因此,本研究旨在探討經S100A8/A9 預處理的 hAMSCs條件培養液是否於 MI 後發揮心臟保護作用並維持心臟功能。 本研究分為體內試驗及體外試驗兩部分,第一階段,體外試驗將分別分離胎鼠心肌細胞(neonatal cardiomyocytes, nCMs)及人類羊膜間葉幹細胞(human amniotic mesenchymal stem cells, hAMSCs)進行初代培養與細胞特性分析作為本試驗細胞來源,再利用nCMs特異性磁株抗體純化後誘導其缺氧/復氧損傷(hypoxia/ reoxygenation, H/R),並以RT-PCR、qPCR進行檢測,與對照組相比,誘導H/R損傷之nCM處理組之S100蛋白、IL-1、IL-6、TNF-α和IFNγ等細胞受損、促纖維化增生及促炎症相關基因表達具有顯著差異。而人類羊膜間葉幹細胞則以含有額外添加S100A8/A9之培養液與hAMSCs培養,後以RT-PCR、qPCR確認細胞是否產生相應之基因表現,結果顯示以S100A8/A9預處理之hAMSC則於免疫調節和組織修復相關基因,包含TLR、CCR7、IL-10、GDF9、SPARCKL、MMP、TIMP等與對照組相比亦有顯著變化。此外,此研究通過在缺氧條件下更換受損 nCM 之培養液檢測與控制組相比經預處理之hAMSC條件培養液是否具有保護作用,結果顯示hAMSC來源之條件培養液組之細胞存活率顯著高於基礎培養基組,然而,未預處理之hAMSC組與S100A8/A9預處理之hAMSC組之間沒有顯著差異,除此之外,各組在某些基因表達水平之上調和下調結果則顯示hAMSC於預處理後會產生適應性反應,並調控相關之分子機制。 第二階段體內試驗,使用8週齡C57BL/6小鼠心肌梗塞/再灌流模型,以靜脈注射經S100A8/A9預處理後之hAMSC條件培養液進行治療。試驗將分為五組,分別為控制組、假手術組、伪治療組(基礎培養液)、一般治療組(hMSC條件培養液)及預處理治療組(經S100A8/A9預處理後之hMSC條件培養液),於治療後3天、1週、2週及4週以血清學檢查、心臟超音波、組織切片染色檢測心臟結構、功能與血管密度之變化,於心臟超音波結果顯示,預處理之hAMSC組之左心室射血分數和收縮分率顯著高於未預處理hAMSCs組和I/R組(P<0.05),纖維化區域之組織切片染色定量分析,亦顯示各組間纖維化具有顯著差異,並且預處理之hAMSC組雖與一般治療組並無統計上之顯著差異,然其纖維組織之定量結果仍為各處理中最少之組別。 總結,我們證實 S100A8/A9 預處理的 hAMSCs 條件培養基在體外研究和小鼠心肌 I/R 模型的治療中具有增強之修復潛力,期望此研究結果有益於受損後心臟功能之維持,為未來的心肌梗塞相關研究提供良好的治療方向與展望並貢獻於臨床治療。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:02:52Z (GMT). No. of bitstreams: 1
U0001-0907202117240900.pdf: 3343940 bytes, checksum: 4f8537031914afe75a840b33e8a4f870 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 謝誌…………………………Ⅰ 摘要…………………………Ⅱ ABSTRACT…………………………Ⅳ 目錄…………………………Ⅶ 圖次…………………………Ⅹ 表次…………………………ⅩⅠ ABBRREVIATIONS…………………………ⅩⅡ 第一章 緒論…………………………1 第二章 文獻探討…………………………3 2.1 心臟基本構造…………………………3 2.1.1 心臟解剖構造…………………………3 2.1.2 心臟組成及細胞類型…………………………5 2.1.3 心臟生理功能…………………………5 2.2 心臟疾病…………………………7 2.2.1 心肌梗塞…………………………8 2.2.2 心臟疾病體外細胞模型…………………………9 2.2.3 心臟疾病體內動物模型…………………………11 2.3 心臟治療…………………………13 2.4 幹細胞…………………………16 2.4.1 幹細胞定義與分類…………………………16 2.4.2 幹細胞治療…………………………18 2.4.3 羊膜間葉幹細胞…………………………19 2.5 預處理間葉幹細胞之治療策略…………………………21 2.5.1 預處理間葉幹細胞之治療策略綜述…………………………21 2.5.2 S100鈣離子結合蛋白家族之功能…………………………22 2.5.3 S100A8與間葉幹細胞之相互作用…………………………24 第三章 試驗研究…………………………26 3.1 人類羊膜間葉幹細胞之體外分離培養與S100A8/A9預處理系統之建立…………………………26 3.1.1 前言…………………………26 3.1.2 試驗設計與材料方法…………………………27 3.1.3 試驗結果與討論…………………………35 3.2 小鼠心肌細胞體外培養及誘導低氧/復氧損傷模型與人類羊膜間葉幹細胞條件培養液之體外治療潛能…………………………43 3.2.1 前言…………………………43 3.2.2 試驗設計與材料方法…………………………44 3.2.3 試驗結果與討論…………………………50 3.3 小鼠心肌梗塞結紮與再灌流疾病動物模型之建立與人類羊膜間葉幹細胞條件培養液之治療潛能…………………………57 3.1.1 前言…………………………57 3.1.2 試驗設計與材料方法…………………………58 3.1.3 試驗結果與討論…………………………62 第四章 綜合討論…………………………70 第五章 結論…………………………73 第六章 未來展望…………………………75 第七章 參考文獻…………………………76
dc.language.isozh-TW
dc.subjectS100A8/A9zh_TW
dc.subject人類羊膜間葉幹細胞條件培養液zh_TW
dc.subject小鼠心肌梗塞/再灌流模型zh_TW
dc.subjectS100A8/A9en
dc.subjectmurine myocardial I/R modelen
dc.subjecthuman amniotic mesenchymal stem cell derived condition mediumen
dc.titleS100A8/A9預處理於人類羊膜間葉幹細胞條件培養液對心肌梗塞修復潛能之探討zh_TW
dc.titleRepairing myocardial infarction with S100A8/A9 pretreatment in conditioned medium from human amniotic membrane mesenchymal stem cellsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋麗英(Hsin-Tsai Liu),陳全木(Chih-Yang Tseng),李愛先,彭劭于
dc.subject.keyword人類羊膜間葉幹細胞條件培養液,小鼠心肌梗塞/再灌流模型,S100A8/A9,zh_TW
dc.subject.keywordhuman amniotic mesenchymal stem cell derived condition medium,murine myocardial I/R model,S100A8/A9,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202101369
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-0907202117240900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved