請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏雪琪(Hsueh-Chi Yen) | |
| dc.contributor.author | Li-Chin Wang | en |
| dc.contributor.author | 王俐晴 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:02:48Z | - |
| dc.date.available | 2021-08-10 | |
| dc.date.available | 2022-11-24T03:02:48Z | - |
| dc.date.copyright | 2021-08-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-12 | |
| dc.identifier.citation | 1 Hershko, A. Tomkins, G. M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J Biol Chem 246, 710-714 (1971). 2 Grimm, L. M., Goldberg, A. L., Poirier, G. G., Schwartz, L. M. Osborne, B. A. Proteasomes play an essential role in thymocyte apoptosis. EMBO J 15, 3835-3844 (1996). 3 Beyette, J., Mason, G. G., Murray, R. Z., Cohen, G. M. Rivett, A. J. Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes. Biochem J 332 ( Pt 2), 315-320, doi:10.1042/bj3320315 (1998). 4 Portbury, A. L., Ronnebaum, S. M., Zungu, M., Patterson, C. Willis, M. S. Back to your heart: ubiquitin proteasome system-regulated signal transduction. J Mol Cell Cardiol 52, 526-537, doi:10.1016/j.yjmcc.2011.10.023 (2012). 5 Hegde, A. N., Smith, S. G., Duke, L. M., Pourquoi, A. Vaz, S. Perturbations of Ubiquitin-Proteasome-Mediated Proteolysis in Aging and Alzheimer's Disease. Front Aging Neurosci 11, 324, doi:10.3389/fnagi.2019.00324 (2019). 6 Teixeira, F. R. et al. Gsk3beta and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson's disease. Biochem J 473, 3563-3580, doi:10.1042/BCJ20160387 (2016). 7 Momtaz, S. et al. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 11, 361, doi:10.3389/fphys.2020.00361 (2020). 8 Shukla, S. K. Rafiq, K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 205, 64-76, doi:10.1016/j.trsl.2018.09.003 (2019). 9 Schwartz, A. L. Ciechanover, A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 50, 57-74, doi:10.1146/annurev.med.50.1.57 (1999). 10 Lecker, S. H., Goldberg, A. L. Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17, 1807-1819, doi:10.1681/ASN.2006010083 (2006). 11 Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17, 7151-7160, doi:10.1093/emboj/17.24.7151 (1998). 12 Hegde, A. N., Haynes, K. A., Bach, S. V. Beckelman, B. C. Local ubiquitin-proteasome-mediated proteolysis and long-term synaptic plasticity. Front Mol Neurosci 7, 96, doi:10.3389/fnmol.2014.00096 (2014). 13 Heimdal, K. et al. STUB1 mutations in autosomal recessive ataxias - evidence for mutation-specific clinical heterogeneity. Orphanet J Rare Dis 9, 146, doi:10.1186/s13023-014-0146-0 (2014). 14 Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc Natl Acad Sci U S A 116, 358-366, doi:10.1073/pnas.1816596116 (2019). 15 Rogers, S., Wells, R. Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364-368, doi:10.1126/science.2876518 (1986). 16 Feldman, R. M., Correll, C. C., Kaplan, K. B. Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221-230, doi:10.1016/s0092-8674(00)80404-3 (1997). 17 Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468, doi:10.1126/science.1059817 (2001). 18 Lin, H. C. et al. C-Terminal End-Directed Protein Elimination by CRL2 Ubiquitin Ligases. Mol Cell 70, 602-613 e603, doi:10.1016/j.molcel.2018.04.006 (2018). 19 Koren, I. et al. The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. Cell 173, 1622-1635 e1614, doi:10.1016/j.cell.2018.04.028 (2018). 20 Lamesch, P. et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307-315, doi:10.1016/j.ygeno.2006.11.012 (2007). 21 Emanuele, M. J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459-474, doi:10.1016/j.cell.2011.09.019 (2011). 22 Lin, H. C. et al. SELENOPROTEINS. CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding. Science 349, 91-95, doi:10.1126/science.aab0515 (2015). 23 Yeh, C. W. et al. The C-degron pathway eliminates mislocalized proteins and products of deubiquitinating enzymes. EMBO J 40, e105846, doi:10.15252/embj.2020105846 (2021). 24 Ella, H., Reiss, Y. Ravid, T. The Hunt for Degrons of the 26S Proteasome. Biomolecules 9, doi:10.3390/biom9060230 (2019). 25 Rose, M., Casadaban, M. J. Botstein, D. Yeast genes fused to beta-galactosidase in Escherichia coli can be expressed normally in yeast. Proc Natl Acad Sci U S A 78, 2460-2464, doi:10.1073/pnas.78.4.2460 (1981). 26 Alani, E. Kleckner, N. A new type of fusion analysis applicable to many organisms: protein fusions to the URA3 gene of yeast. Genetics 117, 5-12 (1987). 27 Liu, C. Y. et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285, 37159-37169, doi:10.1074/jbc.M110.152942 (2010). 28 Pratt, J. M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1, 579-591, doi:10.1074/mcp.m200046-mcp200 (2002). 29 Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. Elledge, S. J. Global protein stability profiling in mammalian cells. Science 322, 918-923, doi:10.1126/science.1160489 (2008). 30 Hellen, C. U. Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593-1612, doi:10.1101/gad.891101 (2001). 31 Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E. Hayakawa, T. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1, 376-382, doi:10.1006/mthe.2000.0050 (2000). 32 Rusnac, D. V. et al. Recognition of the Diglycine C-End Degron by CRL2(KLHDC2) Ubiquitin Ligase. Mol Cell 72, 813-822 e814, doi:10.1016/j.molcel.2018.10.021 (2018). 33 McDowell, G. S. Philpott, A. Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol 45, 1833-1842, doi:10.1016/j.biocel.2013.05.026 (2013). 34 Natsume, T., Kiyomitsu, T., Saga, Y. Kanemaki, M. T. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Rep 15, 210-218, doi:10.1016/j.celrep.2016.03.001 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80224 | - |
| dc.description.abstract | "泛素所引導的蛋白質降解系統(Ubiquitin proteasome system)是主要的蛋白質降解系統之一,它參與細胞功能的各種功能調控。在泛素所引導的蛋白質降解系統中,泛素連接酶藉由專一性地辨認降解訊號來清除蛋白質。我們實驗室過去發現新類別的蛋白質降解訊號,我們稱它蛋白質羧基端降解密碼子(C-degron),當它座落在蛋白質羧基端會被辨認降解。雖然我們過去找到一些羧基端降解密碼子的特徵,但我們無法得知這些特徵是否足夠讓蛋白質降解。為了解決這些問題,我發展了一個高通量和情境獨立(context-independent)的方法。我合成帶有特定特徵的隨機胜肽圖庫並結合以螢光測量蛋白質穩定的高通量技術(Global Protein Stability assay, GPS)來檢驗降解密碼的降解強度。我找到了被 CRL2APPBP2和 CRL2KLHDC3 (泛素連接酶)辨認的羧基端降解密碼的缺失特徵。APPBP2 偏好降解蛋白質羧基端帶有正電或極性的xRxxGx模體(motif, x代表隨機胜肽), 當羧基端xRxxGx模體代有多個正電氨基酸,將近100%隨機胜肽圖庫可被APPBP2辨認降解 。當蛋白質羧基端帶有RxxxKG模體(motif),將近100%會被KLHDC3辨認降解。GPS隨機胜肽平台使我們能夠簡單且可靠地去廣泛找到降解密碼子的特徵。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:02:48Z (GMT). No. of bitstreams: 1 U0001-1007202113083300.pdf: 6469904 bytes, checksum: 36ac8b69d4dfad8eb2f1575c050cd84f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I ABSTRACT II INTRODUCTION 1 UBIQUITIN-PROTEASOME SYSTEM 1 DEGRONS 2 C-DEGRONS 3 CURRENT METHODS TO IDENTIFY AND CHARACTERIZE DEGRONS 4 GLOBAL PROTEIN STABILITY (GPS) ASSAY 6 THE AIM OF MY THESIS 7 EXPERIMENTAL DESIGN 8 CHARACTERIZATION OF DEGRON POTENCY VIA CONTEXT-INDEPENDENT RANDOM PEPTIDES AND GPS ASSAY 8 ANALYSIS OF DEGRON SEQUENCES BY SINGLE CELL SORTING AND SEQUENCES COMPARISON 9 ASSESSMENT OF DEGRON POTENCY BY DESIGNING DIFFERENT ADD-IN TARGETED FEATURES 10 CALIBRATION AND ANALYSIS OF %DEGRADATION READOUT FROM GPS 11 METHODS AND MATERIALS 14 RESULTS 17 PROTOTYPE DEGRON MOTIFS IN PROTEIN C-TERMINUS ARE INSUFFICIENT FOR APPBP2- AND KLHDC3-MEDIATED DEGRADATION 17 CHARACTERIZATION OF APPBP2 DEGRON BY SINGLE CELL SORTING AND SEQUENCING 18 CHARACTERIZATION MISSING FEATURES OF APPBP2 DEGRON VIA DIFFERENT ADD-IN FEATURES OF RANDOM PEPTIDE PLATFORMS 19 CHARACTERIZATION MISSING FEATURES OF KLHDC3 DEGRON VIA DIFFERENT ADD-IN FEATURES OF RANDOM PEPTIDE PLATFORMS 22 SUMMARY AND DISCUSSION 24 REFERENCES 27 FIGURES AND APPENDICES 30 | |
| dc.language.iso | en | |
| dc.subject | C端降解密碼 | zh_TW |
| dc.subject | 蛋白質降解 | zh_TW |
| dc.subject | 高通量蛋白質穩定度偵測系統 | zh_TW |
| dc.subject | 隨機胜肽平台 | zh_TW |
| dc.subject | random peptide platform | en |
| dc.subject | protein degradation | en |
| dc.subject | C-degron | en |
| dc.subject | Global Protein Stability assay | en |
| dc.title | 蛋白穩定度隨機胜肽平台歸納蛋白質羧基端降解密碼的特性 | zh_TW |
| dc.title | Characterization of C-degrons via the Global Protein Stability Random Peptide Platform | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭貽生(Hsin-Tsai Liu),陳光超(Chih-Yang Tseng) | |
| dc.subject.keyword | 蛋白質降解,C端降解密碼,高通量蛋白質穩定度偵測系統,隨機胜肽平台, | zh_TW |
| dc.subject.keyword | protein degradation,C-degron,Global Protein Stability assay,random peptide platform, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU202101376 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | zh_TW |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1007202113083300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
