Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章(Soo-Chang Pei)
dc.contributor.authorShao-Yeh Huangen
dc.contributor.author黃紹曄zh_TW
dc.date.accessioned2022-11-23T09:31:59Z-
dc.date.available2021-09-02
dc.date.available2022-11-23T09:31:59Z-
dc.date.copyright2021-09-02
dc.date.issued2021
dc.date.submitted2021-08-18
dc.identifier.citationReferences [1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214–223. PMLR, 2017. [2] P. C. Barnum, S. Narasimhan, and T. Kanade. Analysis of rain and snow in frequency space. International journal of computer vision, 86(23): 256, 2010. [3] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the dark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3291–3300, 2018. [4] D.Y. Chen, C.C. Chen, and L.W. Kang. Visual depth guided image rain streaks removal via sparse coding. In 2012 International Symposium on Intelligent Signal Processing and Communications Systems, pages 151–156. IEEE, 2012. [5] Y. Choi, M. Choi, M. Kim, J.W. Ha, S. Kim, and J. Choo. Stargan: Unified generative adversarial networks for multidomain image-to-image translation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8789–8797, 2018. [6] D. Coltuc, P. Bolon, and J.M. Chassery. Exact histogram specification. IEEE Transactions on Image Processing, 15(5):1143–1152, 2006. [7] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018. [8] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based Fully convolutional networks. arXiv preprint arXiv:1605.06409, 2016. [9] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. FeiFei. Image-net: A large scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. [10] S. Deng, M. Wei, J. Wang, Y. Feng, L. Liang, H. Xie, F. L. Wang, and M. Wang. Detail-recovery image deraining via context aggregation networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14560–14569, 2020. [11] K. Garg and S. K. Nayar. Photometric model of a rain drop. In CMU Technical Report. Citeseer, 2003. [12] K. Garg and S. K. Nayar. Photorealistic rendering of rain streaks. ACM Transactions on Graphics (TOG), 25(3):996–1002, 2006. [13] K. Garg and S. K. Nayar. Photorealistic rendering of rain streaks. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 996–1002, New York, NY, USA, 2006. ACM. [14] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. IEEE transactions on Image Processing, 4(7):932–946, 1995. [15] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand. Deep bilateral learning for real-time image enhancement. ACM Transactions on Graphics (TOG), 36(4):1–12, 2017. [16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014. [17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasserstein-gans. arXiv preprint arXiv:1704.00028, 2017. [18] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1780–1789, 2020. [19] X. Guo, Y. Li, and H. Ling. Lime: Low-light image enhancement via illumination map estimation. IEEE Transactions on image processing, 26(2):982–993, 2016. [20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. [21] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two timescale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500, 2017. [22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017. [23] X. Huang, M.Y. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-image translation. In Proceedings of the European conference on computer vision (ECCV), pages 172–189, 2018. [24] P. Isola, J.Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125–1134, 2017. [25] Y. Jiang, X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, and Z. Wang. Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 30:2340–2349, 2021. [26] Z. Jiang, Z. Lin, and L. S. Davis. Learning a discriminative dictionary for sparse coding via label consistent k-svd. In CVPR 2011, pages 1697–1704. IEEE, 2011. [27] J.H. Kim, C. Lee, J.Y. Sim, and C.S. Kim. Single-image deraining using an adaptive nonlocal means filter. In 2013 IEEE International Conference on Image Processing, pages 914–917. IEEE, 2013. [28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [29] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. [30] E. H. Land. The retinex theory of color vision. Scientific american, 237(6):108–129, 1977. [31] E. H. Land and J. J. McCann. Lightness and retinex theory. Josa, 61(1):1–11, 1971. [32] C. Lee, C. Lee, and C.S. Kim. Contrast enhancement based on layered difference representation of 2d histograms. IEEE transactions on image processing, 22(12):5372–5384, 2013. [33] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown. Rain streak removal using layer priors. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2736–2744, 2016. [34] M.Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. arXiv preprint arXiv:1703.00848, 2017. [35] S. Liu, J. Pan, and M.H. Yang. Learning recursive filters for low-level vision via a hybrid neural network. In European Conference on Computer Vision, pages 560–576. Springer, 2016. [36] Y. P. Loh and C. S. Chan. Getting to know low-light images with the exclusively dark dataset. Computer Vision and Image Understanding, 178:30–42, 2019. [37] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015. [38] Y. Luo, Y. Xu, and H. Ji. Removing rain from a single image via discriminative sparse coding. In Proceedings of the IEEE International Conference on Computer Vision, pages 3397–3405, 2015. [39] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least squares generative adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2794–2802, 2017. [40] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014. [41] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a“completely blind'image quality analyzer. IEEE Signal processing letters, 20(3):209–212, 2012. [42] V. Nagarajan and J. Z. Kolter. Gradient descent gan optimization is locally stable. arXiv preprint arXiv:1706.04156, 2017. [43] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on computer vision, pages 1520–1528, 2015. [44] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld. Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3):355–368, 1987. [45] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015. [46] W. Ren, S. Liu, L. Ma, Q. Xu, X. Xu, X. Cao, J. Du, and M.H. Yang. Low-light image enhancement via a deep hybrid network. IEEE Transactions on Image Processing, 28(9):4364–4375, 2019. [47] D. A. Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741:659–663, 2009. [48] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015. [49] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. arXiv preprint arXiv:1606.03498, 2016. [50] Z. Shi, Y. Feng, M. Zhao, and L. He. A joint deep neural networks-based Method for single nighttime rainy image enhancement. Neural Computing and Applications, pages 1–14, 2019. [51] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. [52] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9627–9636, 2019. [53] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning, pages 2048–2057. PMLR, 2015. [54] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan. Deep joint rain detection and removal from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1357–1366, 2017. [55] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. [56] H. Zhang and V. M. Patel. Density-aware single image deraining using a multi-stream dense network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 695–704, 2018. [57] H. Zhang, V. Sindagi, and V. M. Patel. Image deraining using a conditional generative adversarial network. IEEE transactions on circuits and systems for video technology, 30(11):3943–3956, 2019. [58] Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition. In 2010 IEEE computer society conference on computer vision and pattern recognition, pages 2691–2698. IEEE, 2010. [59] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual dense network for image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2472–2481, 2018. [60] J.Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–2232, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80210-
dc.description.abstract在惡劣的天氣條件下(尤其是在下雨的夜晚) 將使圖像質量下降,並導致許多基於視覺的應用失敗,例如自動駕駛和物體檢測。為了解決該問題並從夜間陰雨圖像中獲得清晰的圖像,我們提出了一種基於深度學習的單張夜間陰雨圖像除雨與強化模型。該模型包含兩個子模型:首先,亮度增強網絡基於對抗生成網路(GAN) 架構,用於將夜間陰雨圖像的亮度調整為更加清晰與明亮。然後,雨水去除網絡使用上下文相關的擴張網絡從強化後的圖像中除去除雨水條紋。基於改良JORDER和EnlightenGAN的訓練架構,提出的方法可以同時增強亮度效果並消除夜間多雨圖像的雨紋。透過在生成數據集和真實數據集上進行廣泛的實驗,所提出的方法比現有技術有了顯著的改進。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:31:59Z (GMT). No. of bitstreams: 1
U0001-2105202111543300.pdf: 50624377 bytes, checksum: 0a3c002f84b041e8674a5a492857b5f6 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsContents Page Acknowledgements 3 摘要5 Abstract 7 Contents 9 List of Figures 13 List of Tables 17 Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Classical Low-Light Image Enhancement 5 2.1.1 Adaptive Histogram Equalization And Its Variations (AHE) 6 2.1.2 Lime: Lowlight Image Enhancement Via Illumination Estimation (LIME) 7 2.2 Classical Image Deraining Algorithms 9 2.2.1 Removing Rain From A Single Image Via Discriminative Sparse Coding (DSC) 10 2.2.2 Rain Streak Removal Using Layer Priors (GMM) 12 2.3 Generative Adversarial Network 14 Chapter 3 Deep Nighttime Image Enhancement 17 3.1 Image-to-Image Translation 17 3.1.1 Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) 18 3.1.2 Unsupervised Image-to-image Translation Networks (UNIT) 19 3.1.3 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (CycleGAN) 20 3.2 Low-Light Image Enhancement 21 3.2.1 Learning to see in the dark (SID) 22 3.2.2 Low-Light Image Enhancement via a Deep Hybrid Network 23 3.2.3 EnlightenGAN: Deep Light Enhancement Without Paired Supervision 26 3.3 Experiment 29 Chapter 4 Deep Daytime Single Image Deraining 33 4.1 Deep Joint Rain Detection and Removal from a Single Image (JORDER) 33 4.2 Density-aware Single Image Deraining using a Multi-stream Dense Network (DIDMDN) 36 4.3 Image DeRaining Using a Conditional Generative Adversarial Network (IDCGAN) 38 4.4 Detail-recovery Image Deraining via Context Aggregation Networks (DRDNet) 39 4.5 Experiment 41 Chapter 5 Deep Nighttime Single Image Deraining 45 5.1 Related Work 45 5.1.1 A Joint Deep Neural Networks-based Method For Single Nighttime Rainy Image Enhancement 45 5.2 Proposed Deep Single Nighttime Rainy Image Deraining and Enhancement 47 5.2.1 Framework 47 5.2.2 Illumination Enhancement Network 49 5.2.3 Rain Removal Network 50 5.2.4 Training Data 51 5.2.5 Loss Function 52 5.2.6 Experiment 53 Chapter 6 Conclusion and Future Work 57 References 59
dc.language.isoen
dc.subject卷積神經網路zh_TW
dc.subject夜晚下雨除雨zh_TW
dc.subject生成對抗網路zh_TW
dc.subject夜晚影像強化zh_TW
dc.subjectConvolutional Neural Networken
dc.subjectNighttime Rainy Image Enhancementen
dc.subjectGenerative Adversarial Networken
dc.subjectNighttime Image Enhancementen
dc.title基於深度學習的單張夜晚陰雨影像除雨與強化演算法zh_TW
dc.titleDeep Learning-based Single Nighttime Rainy Image Deraining and Enhancement Algorithmen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee杭學鳴(Hsin-Tsai Liu),鍾國亮(Chih-Yang Tseng),黃文良 ,丁建均
dc.subject.keyword夜晚影像強化,夜晚下雨除雨,生成對抗網路,卷積神經網路,zh_TW
dc.subject.keywordNighttime Image Enhancement,Nighttime Rainy Image Enhancement,Generative Adversarial Network,Convolutional Neural Network,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202100915
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2105202111543300.pdf49.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved