Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華(Shing-Hwa Liu)
dc.contributor.authorTien-Fong Luen
dc.contributor.author陸天鳳zh_TW
dc.date.accessioned2021-05-19T18:02:52Z-
dc.date.available2024-12-31
dc.date.available2021-05-19T18:02:52Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-07-25
dc.identifier.citation1. American Diabetes Association (2013) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 36: S67-S74
2. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4-14
3. World Health Organization (2011) Global status report on noncommunicable diseases 2010. Chapter 1
4. World Health Organization (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia.
5. World Health Organization (2011) Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus.
6. Richardson SJ1, Willcox A, Bone AJ, Morgan NG, Foulis AK (2011) Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 33(1):9-21
7. Yamagishi S1, Nakamura K, Imaizumi T (2005) Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 1(1):93-106
8. Yamagishi S1, Matsui T (2010) Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 3(2):101-108
9. Amann K1, Benz K (2013) Structural renal changes in obesity and diabetes. Semin Nephrol 33(1):23-33
10. Sun YM1, Su Y, Li J, Wang LF (2013) Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 433(4):359-361
11. Raparia K1, Usman I, Kanwar YS (2013) Renal morphologic lesions reminiscent of diabetic nephropathy. Arch Pathol Lab Med 137(3):351-359
12. Najafian B1, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36-47
13. Zhu D1, Yu H, He H, Ding J, Tang J, Cao D, Hao L (2013) Spironolactone inhibits apoptosis in rat mesangial cells under hyperglycaemic conditions via the Wnt signalling pathway. Mol Cell Biochem 380(1-2):185-193
14. Abboud HE (2012) Mesangial cell biology. Exp Cell Res 318(9):979-985
15. Wilson HM1, Stewart KN (2012) Glomerular epithelial and mesangial cell culture and characterization. Methods Mol Biol 806:187-201
16. Yamagishi S1, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, Makita Z (2002) Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 277(23):20309-20315
17. Daroux M1, Prévost G, Maillard-Lefebvre H, Gaxatte C, D'Agati VD, Schmidt AM, Boulanger E (2010) Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab 36(1):1-10
18. Su J1, Zhou L, Kong X, Yang X, Xiang X, Zhang Y, Li X, Sun L (2013) Endoplasmic reticulum is at the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in the pathogenesis of diabetes mellitus. J Diabetes Res 2013:193461
19. Cheng Y1, Yang JM (2011) Survival and death of endoplasmic-reticulum-stressed cells: Role of autophagy. World J Biol Chem 2(10):226-231
20. Piperi C1, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG (2012) J Clin Endocrinol Metab 97(7):2231-42
21. Cybulsky AV (2013) The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 84(1):25-33
22. Inagi R (2009) Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol 112(1):e1-9
23. Chen Y1, Liu CP, Xu KF, Mao XD, Lu YB, Fang L, Yang JW, Liu C (2008) Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol 28(6):1014-1022
24. Wang Z1, Choi ME (2014) Autophagy in kidney health and disease. Antioxid Redox Signal 20(3):519-537
25. Yamahara K1, Yasuda M1, Kume S1, Koya D2, Maegawa H1, Uzu T1 (2013) The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res 2013:193757
26. Berridge, M.J. (2012) Cell Stress, Inflammatory and cell death. Cell Signalling Biology doi:10.1042/csb0001011
27. He C1, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67-93
28. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861-2873
29. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323-335
30. Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S, Dong Z (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8(7):1009-1031
31. Inoue K1, Kuwana H, Shimamura Y, Ogata K, Taniguchi Y, Kagawa T, Horino T, Takao T, Morita T, Sasaki S, Mizushima N, Terada Y (2010) Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin Exp Nephrol 14(2):112-122
32. Sansanwal P1, Yen B, Gahl WA, Ma Y, Ying L, Wong LJ, Sarwal MM (2010) Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol 21(2):272-283
33. Liang YJ1, Jian JH, Liu YC, Juang SJ, Shyu KG, Lai LP, Wang BW, Leu JG (2010) Advanced glycation end products-induced apoptosis attenuated by PPARdelta activation and epigallocatechin gallate through NF-kappaB pathway in human embryonic kidney cells and human mesangial cells. Diabetes Metab Res Rev 26(5):406-416
34. Meek RL1, LeBoeuf RC, Saha SA, Alpers CE, Hudkins KL, Cooney SK, Anderberg RJ, Tuttle KR (2013) Glomerular cell death and inflammation with high-protein diet and diabetes. Nephrol Dial Transplant 28(7):1711-1720
35. Adamopoulos C, Farmaki E, Spilioti E, Kiaris H, Piperi C, Papavassiliou AG (2014) Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells. Clin Chem Lab Med 52(1):151-160
36. Yamabe S1, Hirose J, Uehara Y, Okada T, Okamoto N, Oka K, Taniwaki T, Mizuta H (2013) Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J 280(7):1617-1629
37. Hou X1, Hu Z, Xu H, Xu J, Zhang S, Zhong Y, He X, Wang N (2014) Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol 13:78
38. Wang SH1, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65(22):3640-3652
39. Bartolomé A1, López-Herradón A, Portal-Núñez S, García-Aguilar A, Esbrit P, Benito M, Guillén C (2013) Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J 455(3):329-337
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8016-
dc.description.abstract糖尿病發病約20-25年之後,約有25-40%的病人會併發糖尿病性腎病。糖尿病性腎病是造成末期腎病變的主因,並會導致糖尿病患者殘障或有較高之死亡率。過去報導指出,糖化終產物在有末期腎病變的糖尿病患者組織中,累積量約為無末期腎病變之糖尿病患者的兩倍。然而,糖化終產物對腎膈細胞的影響尚未明瞭。因此,本研究將探討內質網壓力(ER stress)、凋亡(apoptosis)以及自噬(autophagy)作用在糖化終產物累積於腎膈細胞(mesangial cells)所扮演的角色,以及相互間之作用機制。給予腎膈細胞不同濃度之糖化終產物(10, 20, 40, 80 and 160 μg/ml)後,細胞存活率顯著地隨劑量增加而下降,顯示糖化終產物對腎膈細胞具有毒性。而beclin-1, Atg5, LC3-II, CHOP, p-eIF2α以及cleaved caspase-3之蛋白表現顯著增加,顯示糖化終產物會誘發自噬、內質網壓力以及凋亡作用。另外,處理糖化終產物後,凋亡細胞之比例顯著上升,進一步指出大量累積之糖化終產物會導致腎膈細胞凋亡。共同給予4-苯基丁酸(4PBA)抑制內質網壓力,發現LC3-II及cleaved caspase-3蛋白表現顯著下降,同時,凋亡細胞之比例顯著下降,顯示抑制內質網壓力可以進一步抑制自噬與凋亡作用。另外,細胞轉染(transfection) siAtg5抑制自噬作用,發現cleaved caspase-3蛋白表現顯著增加,並且細胞凋亡比例也顯著增加,指出在糖化終產物導致之細胞凋亡中,自噬作用扮演保護細胞之角色。綜合以上研究結果,糖化終產物可經由誘發內質網壓力而導致腎膈細胞凋亡,以造成腎膈細胞存活率下降;同時,糖化終產物可經由誘發內質網壓力而活化自噬作用,以避免腎膈細胞凋亡而達到保護之作用。zh_TW
dc.description.abstract25-40 % of diabetic patients develop diabetic nephropathy within 20-25 years after the onset of diabetes. Diabetic nephropathy could lead to disability and high mortality rate in diabetic patients. Also, diabetic nephropathy is the most common cause of end-stage renal disease. It has been reported that the amount of advanced glycation end products (AGEs) in tissue of diabetic patients with end-stage renal disease is twice as much as diabetic patients without end-stage renal disease. Still, the influence of AGEs on mesangial cells remains unclear. Therefore, we investigated the effects of ER stress, apoptosis and autophagy responses in mesangial cells cultured with AGEs.
Cells were cultured with BSA (160 μg/ml) and different concentrations of AGEs (10, 20, 40, 80 and 160 μg/ml), and the cell viability decreased by AGEs in a dose-dependent manner, suggesting that AGEs are cytotoxic to mesangial cells. Then, the induction of beclin-1, Atg5, LC3-II, CHOP, p-eIF2α and cleaved caspase-3 as well as the elevated apoptoic cell ratio indicated that AGEs could induce autophagy, ER stress and apoptosis response in mesangial cells. Further, mesangial cells were treated with siAtg5 and 4-phenylbutyric acid (4PBA) to study the role of autophagy and ER stress in AGEs-induced apoptosis. 4PBA, a chemical chaperone, significantly reduced the protein expression of LC3-II and cleaved caspase-3. Also, the ratio of apoptotic cell was significantly decreased with 4PBA. These data suggested that AGEs might induce autophagy and apoptosis through ER stress. On the other hand, transfection of siAtg5 significantly aggravated expression of cleaved caspase-3 and exacerbated apoptotic cell ratio, suggesting that autophagy played a protective role in AGEs-induced mesangial cells apoptosis. In conclusion, AGEs could induce apoptosis and autophagy through ER stress in mesangial cells. And, autophagy played a protective role in AGEs-induced mesangial cell apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:02:52Z (GMT). No. of bitstreams: 1
ntu-103-R01447003-1.pdf: 5154428 bytes, checksum: 214fe6df83d42ce43f6146f72657313a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書………………………............................………….…...i
誌謝………………………………........................………………………...ii
中文摘要……………………….……………………………........……….iii
Abstract...……………….…….......................……………………………iv
Abbreviations……………...………….....……...........……………….......vi
1. Introduction…………………………….………...…...........…........1-16
1.1. Diabetes mellitus……………………………….........................1-2
1.2. Diabetic nephropathy...………………................……………...2-5
1.3. Advanced glycation end products (AGEs)…………........…......5-8
1.4. Endoplasmic reticulum (ER) stress……...……........................8-11
1.5. Autophagy……………………....................…………...........11-14
1.6. The interaction between autophagy and ER stress…..............14-15
1.7. Hypothesis and aims………………….........................................16
2. Materials and Methods…………………..….........………………17-21
2.1. Antibodies...……………………………............……………….17
2.2. Cell culture…...………………….................................………...17
2.3. Preparation of AGEs…...…………......................………......17-18
2.4. Cell viability assay…...…………………………........…………18
2.5. Apoptosis assay…...………………………….........………...18-19
2.6. Preparation of total cell lysates....................................................19
2.7. Western blot analysis..............................................................19-20
2.8. RNA interference....................................................................20-21
2.9. Statistics........................................................................................21
3. Results..............................................................................................22-26
3.1. AGEs induced apoptosis response in mesangial cells..................21
3.2. Administered with AGEs induced ER stress in mesangial
cells………………………………………………...………...22-23
3.3. Accumulation of AGEs induced autophagy in mesangial cells...23
3.4. 4-phenylbutyric acid (4PBA) reversed AGEs-induced ER stress
and apoptosis response in mesangial cells...............................23-24
3.5. Transfection of siAtg5 aggravated AGEs-induced injury in
mesangial cells.........................................................................24-26
4. Discussion.........................................................................................27-30
5. Figures and Figure Legends...........................................................31-48
Figure 5.1. AGEs decreased the cell viability of mesangial cells.......31
Figure 5.2. AGEs induced the protein expression of cleaved caspase-3
in mesangial cells..............................................................32
Figure 5.3. AGEs induced apoptosis responses in mesangial
cells..............................................................................33-34
Figure 5.4. AGEs induced CHOP and p-eIF2α protein expressions in
mesangial cells.............................................................35-36
Figure 5.5. AGEs induced autophagy activity in mesangial
cells..............................................................................37-38
Figure 5.6. 4PBA reversed AGEs-induced CHOP, p-eIF2α, cleaved
caspase-3, and LC3-II protein expressions in mesangial
cells..............................................................................39-40
Figure 5.7. 4PBA decreased AGEs-induced apoptosis response in
mesangial cells.............................................................41-42
Figure 5.8. Transfection of siAtg5 downregulated AGEs-induced
LC3-II protein expression, and upregulated p62 and
cleaved caspase-3 protein expressions in mesangial
cells..............................................................................43-44
Figure 5.9. Transfection of siAtg5 induced apoptosis response in
mesangial cells.............................................................45-46
Figure 5.10. Transfection of siAtg5 had no effect on CHOP and
p-eIF2α protein expressions in mesangial cells...........47-48
6. Conclusion.............................................................................................49
7. References........................................................................................50-55
dc.language.isoen
dc.title糖化終產物引起腎膈細胞傷害之機制:內質網壓力、自噬、凋亡之角色探討zh_TW
dc.titleInvolvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Mesangial Cells Injuryen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭水銀,姜至剛,楊榮森
dc.subject.keyword糖尿病性腎病,糖化終產物,腎膈細胞,內質網壓力,凋亡,自噬,zh_TW
dc.subject.keyworddiabetic nephropathy,AGEs,mesangial cells,ER stress,apoptosis,autophagy,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
dc.date.embargo-lift2024-12-31-
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf5.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved