Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙(Yu-Hsi Huang)
dc.contributor.authorChe-Jui Changen
dc.contributor.author張哲睿zh_TW
dc.date.accessioned2022-11-23T09:29:07Z-
dc.date.available2021-07-08
dc.date.available2022-11-23T09:29:07Z-
dc.date.copyright2021-07-08
dc.date.issued2021
dc.date.submitted2021-07-01
dc.identifier.citation[1] Kim, J., et al., Piezoelectric electro-active paper (EAPap) speaker. Journal of Mechanical Science and Technology, 2011. 25(11): p. 2763-2768. [2] Morse, P.M., A.S.o. America, and A.I.o. Physics, Vibration and Sound. Vol. 468. 1948: McGraw-Hill New York. [3] Curie J., a.C.P., Development by Pressure of Polar Electricity inHemihedral Crystals with Inclined Faces. 1880: p. 90-102. [4] Tiersten, H.F., Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates. 2013: Springer. [5] Mindlin, R., High frequency vibrations of piezoelectric crystal plates. International Journal of Solids and Structures, 1972. 8(7): p. 895-906. [6] IEEE Ultrasonics Ferroelectrics and Frequency Control Society, in ANSI/IEEE Std 176. 1987. [7] Rogacheva, N.N., The theory of piezoelectric shells and plates. 2020: CRC press. [8] Gorman, D.J., Vibration analysis of plates by the superposition method. Vol. 1. 1999: World scientific. [9] Karlash, V., Planar electroelastic vibrations of piezoceramic rectangular plate and half-disk. International Applied Mechanics, 2007. 43(5): p. 547-553. [10] 吳亦莊, 理論解析與實驗量測壓電平板的面外振動及特性探討. 臺灣大學機械工程學研究所學位論文, 2009: p. 1-214. [11] Chang, S., B. Du, and J. Lin, Electro-elastic modeling of annular piezoceramic actuating disk transducers. Journal of Intelligent Material Systems and Structures, 1999. 10(5): p. 410-421. [12] 林育志, 壓電元件於不同介質中的振動特性研究與實驗量測. 臺灣大學機械工程學研究所學位論文, 2004: p. 1-238. [13] 何祥瑋, 壓電圓盤與壓電圓環共振特性的理論分析與實驗量測. 臺灣大學機械工程學研究所學位論文, 2005: p. 1-150. [14] Huang, C.-H., Free vibration analysis of the piezoceramic bimorph with theoretical and experimental investigation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005. 52(8): p. 1393-1403. [15] 黃育熙, 壓電陶瓷平板, 薄殼, 與雙晶片三維耦合動態特性之實驗量測, 數值計算與理論解析. 臺灣大學機械工程學研究所學位論文, 2009: p. 1-523. [16] 許松逸, 多層壓電圓盤及圓環複合等向性材料三維振動特性之理論解析、數值分析與實驗量測. 2018, 國立臺灣科技大學. [17] Laura, P., C. Rossit, and S. La Malfa, Transverse vibrations of composite, circular annular membranes: exact solution. Journal of Sound and Vibration, 1998. 216(1): p. 190-193. [18] Jabareen, M. and M. Eisenberger, Free vibrations of non-homogeneous circular and annular membranes. Journal of Sound and Vibration, 2001. 240(3): p. 409-429. [19] SS, R., Vibration of continuous systems. New Jersey: Wiley, 2007. [20] Streng, J., Calculation of the surface pressure on a vibrating circular stretched membrane in free space. The Journal of the Acoustical Society of America, 1987. 82(2): p. 679-686. [21] Mellow, T. and L. Kärkkäinen, On the sound field of a circular membrane in free space and an infinite baffle. The Journal of the Acoustical Society of America, 2006. 120(5): p. 2460-2477. [22] Huang, Y.-H. and H.-Y. Chiang, Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms. Journal of Sound and Vibration, 2016. 371: p. 210-226. [23] Leith, E.N. and J. Upatnieks, Reconstructed wavefronts and communication theory. JOSA, 1962. 52(10): p. 1123-1130. [24] Butters, J. and J. Leendertz, Speckle pattern and holographic techniques in engineering metrology. Optics Laser Technology, 1971. 3(1): p. 26-30. [25] Lokberg, O. and K. Hogmoen, Use of modulated reference wave in electronic speckle pattern interferometry. Journal of Physics E: Scientific Instruments, 1976. 9(10): p. 847. [26] Wykes, C., Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements. Optical Engineering, 1982. 21(3): p. 213400. [27] Wang, W.-C., C.-H. Hwang, and S.-Y. Lin, Vibration measurement by the time-averaged electronic speckle pattern interferometry methods. Applied optics, 1996. 35(22): p. 4502-4509. [28] 黃吉宏, 應用電子斑點干涉術探討三維壓電材料. 國立台灣大學機械工程研究所博士論文, 87 年 6 月. [29] 黃育熙, 壓電石英晶體之平板結構的動態特性研究. 國立台灣大學機械工程研究所博士論文, 92年6月. [30] Ma, C.-C., et al., Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminated composite plate. The Journal of the Acoustical Society of America, 2006. 119(3): p. 1476-1486. [31] Chiang, H.-Y. and Y.-H. Huang, Experimental modeling and application of push-pull electrostatic speakers. The Journal of the Acoustical Society of America, 2019. 146(4): p. 2619-2631. [32] Wang, C., Vibration of an annular membrane attached to a free, rigid core. Journal of Sound Vibration, 2003. 260(4): p. 776-782. [33] Pinto, F., Analytical and experimental investigation on a vibrating annular membrane attached to a central free, rigid core. Journal of Sound and Vibration, 2006. 291(3-5): p. 1278-1287. [34] Kim, H.J., W.S. Yang, and K. No, Effects of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013. 60(8): p. 1587-1594. [35] 林揚中,莊沅隴, 雙層壓電圓盤複合薄膜研製近場聲學元件之耦合聲場的理論數值與實驗研究. 國立台灣科技大學機械工程實務專題報告, 105年1月. [36] 江信遠, 靜電和壓電揚聲器之圓形振膜振動與聲壓研究. 國立台灣科技大學機械工程研究所博士論文, 106 年 7 月. [37] 陳冠宇, 薄膜複合壓電圓板開發近場聲學元件之理論解析、數值計算與實驗量測. 國立台灣科技大學機械工程系碩士學位論文, 108年7月. [38] 林憲陽, 壓電陶瓷複合層板動態特性之數值分析與實驗量測. 國立台灣大學機械工程研究所博士論文, 91年6月. [39] 杜功焕, 朱哲民, and 龚秀芬, 声学基础 (上册). 1981. p. 3. [40] Leach, W.M., Introduction to Electroacoustics and Audio Amplifier Design. 2003: Kendall/Hunt Publishing Company Dubuque, IA.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80156-
dc.description.abstract" 本研究透過理論分析和有限元素法數值模擬,先各別探討串聯型雙層壓電陶瓷圓環於自由邊界條件下的面外振動特性;以及具有特定張力大小的圓形、環形薄膜於軸向無阻尼外圈固定下的振動特性,接著以機電聲類比轉換電路導入空氣阻尼項,模擬薄膜實際在空氣中振動所受到的空氣負載效應(loading effect)。最後以類自由邊界條件將兩元件複合,探討串聯型雙層壓電陶瓷圓環複合圓形薄膜結構之振動與聲學特性。 使用全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)、雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)兩種實驗技術量測此複合結構的振動特性,並與理論解析、有限元素法數值模擬進行比較,針對圓形薄膜所附有的張力值以量測到的共振頻率帶回理論公式計算所得。 綜合上述的分析方法,本研究設計出一款串聯型雙層壓電陶瓷圓環複合圓型薄膜之複合聲學元件,使用有限元素法模擬此聲學元件的聲壓曲線(Sound Pressure Level, SPL),達到尺寸最佳化的設計。並提出聲壓理論分析,利用LDV量測實際位移後,帶入雷利積分公式探討活塞(piston mode)和節圓模態(symmetric mode)對頻率響應的貢獻,最後與實際聲學測量(AM)的結果進行比較,以佐證有限元素法和理論應用於聲場的計算結果。 本研究結合理論解析、數值分析與實驗量測,以壓電圓環複合薄膜設計複合聲學元件的研究方法,可應用於新型揚聲器最佳化聲場增益特性之聲音品質的開發。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:29:07Z (GMT). No. of bitstreams: 1
U0001-2906202116204300.pdf: 9052530 bytes, checksum: aa557856e8efd229f801984be19128f9 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 ······························································ I 誌謝 ········································································· II 中文摘要 ····································································· III ABSTRACT ···································································· IV 目錄 ········································································· V 圖目錄 ······································································· IX 表目錄 ······································································· XII 第一章 緒論 ·································································· 1 1.1 研究動機 ····························································· 1 1.2 文獻回顧 ····························································· 2 1.3 論文內容簡介 ·························································· 7 第二章 實驗系統架設、壓電理論與聲學基本理論 ····································· 9 2.1 雷射都卜勒測振儀 ······················································ 9 2.2 電子斑點干涉術 ························································ 12 2.3 聲學量測(AM) ························································· 19 2.4 人工耳量測 ··························································· 21 2.5 壓電基本理論 ·························································· 22 2.6 聲學基本理論 ·························································· 26 第三章 聲學元件設計與製作流程 ·················································· 30 3.1 元件製作方式 ·························································· 30 3.1.1 繃膜製程 ························································ 30 3.1.2 壓電的黏貼方式 ··················································· 32 3.2 複合聲學元件的設計 ····················································· 35 3.2.1 並聯型雙層壓電圓盤複合環形薄膜之複合聲學元件(A) ····················· 35 3.2.2 並聯型雙層壓電圓環複合圓形薄膜之複合聲學元件(B) ····················· 37 3.2.3 串聯型雙層壓電圓環複合厚圓形薄膜之複合聲學元件(C) ··················· 40 3.2.4 串聯型雙層壓電圓環複合薄圓形薄膜之複合聲學元件(D) ····················43 第四章 壓電陶瓷圓環振動特性分析 ·················································· 46 4.1 壓電陶瓷振動分析理論推導 ················································ 46 4.2 串聯型雙層壓電圓環振動特性理論分析 ······································· 50 4.2.1 簡介 ···························································· 50 4.2.2 雙層壓電陶瓷應力、電場與位移關係 ··································· 50 4.2.3 串聯型雙層壓電陶瓷圓環軸向振動特性理論分析 ·························· 53 4.3 串聯型雙層壓電陶瓷圓環於軸向振動特性理論分析與數值分析之比較 ················ 59 4.3.1 簡介 ····························································· 59 4.3.2 試片規格和FEM數值分析設定介紹 ······································ 59 4.3.3 串聯型雙層壓電圓環於軸向振動理論解析與數值分析之比較···················60 第五章 薄膜振動特性分析與實驗量測 ················································· 63 5.1 薄膜振動特性理論分析 ····················································· 63 5.1.1 簡介 ····························································· 63 5.1.2 圓形薄膜無阻尼的統御方程式 ········································· 64 5.1.3 環形、圓形薄膜於無阻尼之自由振動理論分析 ···························· 66 5.1.4 圓形薄膜具阻尼的統御方程式 ········································· 68 5.1.5 阻抗類比分析 ······················································ 69 5.2 薄膜振動特性理論分析、數值分析與實驗量測之比較 ····························· 72 5.2.1 簡介 ····························································· 72 5.2.2 試片規格和FEM數值分析設定介紹 ······································ 72 5.2.3 薄膜振動理論解析與數值分析之比較 ···································· 76 5.2.4 薄膜振動實驗架設與量測結果 ········································· 81 第六章 串聯型雙層壓電圓環複合薄膜振動分析 ········································· 86 6.1 串聯型雙層壓電圓環複合薄膜振動特性理論分析 ································ 86 6.1.1 簡介 ····························································· 86 6.1.2 串聯型雙層壓電圓環複合薄膜之軸向振動理論分析 ························· 86 6.2 串聯型雙層壓電圓環複合薄膜振動特性理論分析、數值分析與實驗量測之比較 ········· 93 6.2.1 簡介 ····························································· 93 6.2.2 試片規格和FEM數值分析設定介紹 ······································ 93 6.2.3 串聯型雙層壓電圓環複合薄膜振動理論解析與數值分析之比較 ··············· 94 第七章 複合聲學元件的聲學特性分析與實驗量測 ······································· 97 7.1 複合聲學元件聲學特性理論分析 ············································· 97 7.1.1 簡介 ····························································· 97 7.1.2 聲學特性理論分析 ·················································· 97 7.1.3 壓電圓盤複合薄膜聲壓理論計算(model A) ······························ 99 7.1.4 壓電圓環複合薄膜(model B, C, and D) ······························ 102 7.2 複合聲學元件聲學特性FEM數值分析 ········································· 107 7.2.1 簡介 ···························································· 107 7.2.2 試片規格和FEM數值分析設定介紹 ····································· 107 7.3 複合聲學元件聲學特性理論分析、數值分析與實驗量測之比較······················ 109 7.3.1 複合聲學元件振動實驗量測結果(ESPI和LDV) ··························· 110 7.3.2 複合聲學元件聲學理論解析與實驗量測之比較 ··························· 116 7.3.3 複合聲學元件聲學FEM數值分析與實驗量測之比較 ························ 122 7.3.4 複合聲學元件聲學實驗量測結果(無響室和人工耳) ······················· 124 7.3.5 耳罩式耳機左右單體量測 ··········································· 127 第八章 結論與未來展望··························································· 128 8.1 結論 ································································· 128 8.2 未來展望 ······························································ 130 參考文獻 ······································································ 132"
dc.language.isozh-TW
dc.subject壓電陶瓷圓環zh_TW
dc.subject聲固耦合分析zh_TW
dc.subject振動與聲學zh_TW
dc.subject聲學元件zh_TW
dc.subject薄膜zh_TW
dc.subject薄板理論zh_TW
dc.subjectPiezoelectric circular plateen
dc.subjectAcoustic componenten
dc.subjectAcoustic-structure interactionen
dc.subjectVibration and acousticen
dc.subjectMembraneen
dc.title壓電圓環複合薄膜於聲學元件之設計開發zh_TW
dc.titleAnalytical and Experimental Investigation on Annular Piezoelectric Plates Attached to Membrane of Acoustic Componentsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬劍清(Hsin-Tsai Liu),王昭男(Chih-Yang Tseng),江信遠
dc.subject.keyword薄板理論,壓電陶瓷圓環,薄膜,聲學元件,振動與聲學,聲固耦合分析,zh_TW
dc.subject.keywordPiezoelectric circular plate,Membrane,Vibration and acoustic,Acoustic-structure interaction,Acoustic component,en
dc.relation.page135
dc.identifier.doi10.6342/NTU202101192
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2906202116204300.pdf8.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved