請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80133完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙(Yu-Hsi Huang) | |
| dc.contributor.author | Chun-Yi Lin | en |
| dc.contributor.author | 林均憶 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:27:57Z | - |
| dc.date.available | 2021-07-20 | |
| dc.date.available | 2022-11-23T09:27:57Z | - |
| dc.date.copyright | 2021-07-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-06 | |
| dc.identifier.citation | [1] Mohamed, O.A., S.H. Masood, and J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 2015. 3(1): p. 42-53. [2] Sood, A.K., R.K. Ohdar, and S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials Design, 2010. 31(1): p. 287-295. [3] Chohan, J.S., R. Singh, K.S. Boparai, R. Penna, and F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Composites Part B: Engineering, 2017. 117: p. 138-149. [4] Parandoush, P. and D. Lin, A review on additive manufacturing of polymer-fiber composites. Composite Structures, 2017. 182: p. 36-53. [5] Wang, X., M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 2017. 110: p. 442-458. [6] Li, L., Q. Sun, C. Bellehumeur, and P. Gu, Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. Journal of Manufacturing Processes, 2002. 4(2): p. 129-141. [7] Ahn, S.H., M. Montero, D. Odell, S. Roundy, and P.K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002. [8] Martínez, J., J. Diéguez, E. Ares, A. Pereira, P. Hernández, and J. Pérez, Comparative between FEM models for FDM parts and their approach to a real mechanical behaviour. Procedia Engineering, 2013. 63: p. 878-884. [9] Domingo-Espin, M., J.M. Puigoriol-Forcada, A.-A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes, Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Materials Design, 2015. 83: p. 670-677. [10] Yao, T., H. Ouyang, S. Dai, Z. Deng, and K. Zhang, Effects of manufacturing micro-structure on vibration of FFF 3D printing plates: material characterisation, numerical analysis and experimental study. Composite Structures, 2021: p. 113970. [11] 新野正之, 平., 渡辺龙三, 倾斜机能材料―宇宙机用超耐热材料を目指して. 1987: 日本复合材料学会志. p. 1-8. [12] Sasaki, M. and T. Hirai, Fabrication and properties of functionally gradient materials. Journal of the Ceramic Society of Japan, 1991. 99(1154): p. 1002-1013. [13] Malik, P. and R. Kadoli, Nonlinear bending and free vibration response of SUS316-Al2O3 functionally graded plasma sprayed beams: theoretical and experimental study. Journal of Vibration and Control, 2018. 24(6): p. 1171-1184. [14] Merk, N., X. Ding, and X. Guo, Dc and pulse plating of CuNi and CuZn gradient foils: evaluation by SEM/TEM. Ceramic Transactions, 34 pp., 1993. 279. [15] Cherradi, N., A. Kawasaki, and M. Gasik, Worldwide trends in functional gradient materials research and development. Composites Engineering, 1994. 4(8): p. 883-894. [16] Allahyarzadeh, M., M. Aliofkhazraei, A.S. Rouhaghdam, and V. Torabinejad, Gradient electrodeposition of Ni-Cu-W (alumina) nanocomposite coating. Materials Design, 2016. 107: p. 74-81. [17] Jackson, T., H. Liu, N. Patrikalakis, E. Sachs, and M. Cima, Modeling and designing functionally graded material components for fabrication with local composition control. Materials Design, 1999. 20(2-3): p. 63-75. [18] Elishakoff, I. and S. Candan, Apparently first closed-form solution for vibrating: inhomogeneous beams. International Journal of Solids and Structures, 2001. 38(19): p. 3411-3441. [19] Kieback, B., A. Neubrand, and H. Riedel, Processing techniques for functionally graded materials. Materials Science and Engineering: A, 2003. 362(1-2): p. 81-106. [20] Birman, V. and L.W. Byrd, Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 2007. [21] Kapuria, S., M. Bhattacharyya, and A. Kumar, Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Composite Structures, 2008. 82(3): p. 390-402. [22] Garland, A. and G. Fadel, Design and manufacturing functionally gradient material objects with an off the shelf three-dimensional printer: challenges and solutions. Journal of Mechanical Design, 2015. 137(11). [23] Measures, R.M., Structural monitoring with fiber optic technology. 2001: Academic Press, Inc. [24] Udd, E., Fiber optic smart structures. Proceedings of the IEEE, 1996. 84(6): p. 884-894. [25] Measures, R.M., Smart composite structures with embedded sensors. Composites Engineering, 1992. 2(5-7): p. 597-618. [26] Measures, R., Historical overview of the UTIAS Fiber Optic Smart Structures Laboratory. Canadian Aeronautics and Space Journal, 1999. 45(2): p. 184-193. [27] Suresh, R., S. Tjin, and N. Ngo, Shear force sensing by strain transformation using non-rectilinearly embedded fiber Bragg grating. Sensors and Actuators A: Physical, 2004. 116(1): p. 107-118. [28] Francu, J., P. Novackova, and P. Janicek, Torsion of a non-circular bar. Engineering Mechanics, 2012. 19(1): p. 45-60. [29] Kousiatza, C. and D. Karalekas, In-situ monitoring of strain and temperature distributions during fused deposition modeling process. Materials Design, 2016. 97: p. 400-406. [30] Manzo, N.R., G.T. Callado, C.M. Cordeiro, and L.C.M. Vieira Jr, Embedding optical fiber Bragg grating (FBG) sensors in 3D printed casings. Optical Fiber Technology, 2019. 53: p. 102015. [31] Ike, C.C., Galerkin Solutions for the Saint-Venant Torsion of Prismatic Bars with Rectangular Cross-sections Advances in Modelling and Analysis A, 2019. [32] 黃泰榮, 積層製造材料與噴頭壓電陶瓷之異向性力學材料常數量測. 104年6月, 國立臺灣科技大學機械工程系碩士論文. [33] 黃柏鈞, 積層製造於異向性力學以複合材料薄梁結構進行振動特性分析與應用. 106年6月, 國立臺灣科技大學機械工程系碩士論文. [34] 張仕翰, 積層製造結構於軟硬異質層疊材料之動態特性. 108年7月, 國立臺灣科技大學機械工程系碩士論文. [35] Ma, C.-C., Y.-H. Huang, and S.-Y. Pan, Investigation of the transient behavior of a cantilever beam using PVDF sensors. Sensors, 2012. 12(2): p. 2088-2117. [36] Huang, Y. and X.-F. Li, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. Journal of Sound and Vibration, 2010. 329(11): p. 2291-2303. [37] Goodno, B.J. and J.M. Gere, Mechanics of Materials. Ninth ed. 2017: Cengage Learning. [38] Rongqiao, X., H. Jiansheng, and C. Weiqiu, Saint-Venant torsion of orthotropic bars with inhomogeneous rectangular cross section. Composite Structures, 2010. 92(6): p. 1449-1457. [39] Muskhelishvili, N.I., Some basic problems of the mathematical theory of elasticity. Vol. 15. 1953: Noordhoff Groningen. p. 583-597. [40] Betz, D.C., G. Thursby, B. Culshaw, and W.J. Staszewski, Advanced layout of a fiber Bragg grating strain gauge rosette. Journal of lightwave technology, 2006. 24(2): p. 1019-1026. [41] Schubert, C., M.C. Van Langeveld, and L.A. Donoso, Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, 2014. 98(2): p. 159-161. [42] Giri, A., C. Pandey, M. Mahapatra, K. Sharma, and P. Singh, On the estimation of error in measuring the residual stress by strain gauge rosette. Measurement, 2015. 65: p. 41-49. [43] Chia, H.N. and B.M. Wu, Recent advances in 3D printing of biomaterials. Journal of biological engineering, 2015. 9(1): p. 1-14. [44] 許明發, 柯哲豪, 劉顯光, 郭文雄, 複合材料入門. 中華民國尖端材料科技協會, 94年8月. [45] 蔡富吉, 蔡坤哲, 3D印表機自造全書. 碁峰出版社, 2014年4月. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80133 | - |
| dc.description.abstract | 本研究探討積層製造技術的異向性力學性質,透過熔融沉積成型的3D列印機列印出不同堆疊方式的試片,進行動態試驗量測,經由理論反算3個方向的材料常數,再輸入到有限元素軟體中,以正交性材料之模型驗證量測的準確性,證明透過熔融沉積成型的試片具有正交性性質,接著探討在不同的列印參數下,包括列印角度與層高,對試片的材料常數影響。此外,同樣利用熔融沉積成型來製作功能性梯度材料,以軸向長度為變化方向,將試片分為四個區塊,每個區塊用不同列印參數製作,接著對其進行動態試驗量測其共振頻率,並推導其理論解析,以理論與模擬來比較實驗結果,在後續將功能性梯度材料分為尺寸變化與材料性質變化兩個部份來探討,發現可透過設計試片尺寸與列印參數來達到升降頻的效果。 最後則研究應變規應用於埋入式感測的可行性,文中嘗試將三軸應變規埋入於3D列印的試片中,接著將試片進行懸臂梁彎曲與扭轉實驗,透過應變規量測試片內部的剪應力,搭配理論解析與數值模擬,驗證應變規埋入式量測的可行性與量測的準確性,並且利用埋入式應變規做動態訊號之量測,也成功量測試片之自然共振頻率。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:27:57Z (GMT). No. of bitstreams: 1 U0001-0207202120183400.pdf: 13222993 bytes, checksum: b906e59a7829a7ede0d93b32b336136e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 文獻回顧 2 1.3 內容介紹 5 第二章 實驗儀器設備 7 2.1 3D列印機 7 2.2 雷射都卜勒振動儀(Laser Doppler Vibrometer,LDV) 8 2.3 應變規(Strain Gauge) 9 第三章 材料常數量測 12 3.1 彈性力學理論 12 3.1.1 非等向性材料(Anisotropic Material) 12 3.1.2 正交性材料(Orthotropic Material) 13 3.1.3 等向性材料(Isotropic Material) 15 3.2 懸臂梁振動理論 17 3.2.1 懸臂梁彎曲模態(Bending Mode) 17 3.2.2 懸臂梁扭轉模態(Torsional Mode) 19 3.3 3D列印之正交性材料性質 21 3.3.1 鋼珠落擊實驗量測 21 3.3.2 模擬驗證正交性性質 21 3.3.3 實驗結果 23 3.4 列印角度於材料性質影響 26 3.4.1 實驗結果 26 3.4.2 模擬驗證 27 3.5 層高於材料性質影響 29 第四章 功能性梯度材料 64 4.1 簡介 64 4.2 彎曲模態之理論解析 65 4.3 試片製作與理論驗證 68 4.3.1 材料常數量測 68 4.3.2 列印功能性梯度試片 68 4.3.3 結果比較 69 4.4 尺寸連續變化 71 4.4.1 比較截面變化之影響 71 4.4.2 設計試片寬度 72 4.5 材料性質連續變化 74 4.5.1 材料常數量測 74 4.5.2 比較材料常數變化之影響 75 4.5.3 增加變化幅度與理論適用性 76 第五章 應變規應用於埋入式感測 103 5.1 簡介 103 5.2 受彎曲情況下之剪應力量測 105 5.3 受扭轉情況下之剪應力量測 107 5.3.1 理論解析 107 5.3.2 實驗結果 111 5.4 動態試驗量測 113 5.4.1 單軸應變規 113 5.4.2 三軸應變規 114 第六章 結論與展望 144 6.1 本文成果 144 6.2 未來工作 147 參考文獻 148 附錄 153 A. 熔融沉積成型列印機規格 153 B. 雷射都卜勒振動儀感測頭規格 154 C. 應變規規格 155 | |
| dc.language.iso | zh-TW | |
| dc.subject | 功能性梯度材料 | zh_TW |
| dc.subject | 共振頻率 | zh_TW |
| dc.subject | 應變規 | zh_TW |
| dc.subject | 埋入式感測 | zh_TW |
| dc.subject | 正交性材料 | zh_TW |
| dc.subject | 積層製造 | zh_TW |
| dc.subject | embedded sensor | en |
| dc.subject | additive manufacturing | en |
| dc.subject | orthotropic material | en |
| dc.subject | functionally graded material | en |
| dc.subject | resonant frequency | en |
| dc.subject | strain gauge | en |
| dc.title | 積層製造之材料量測應用於功能性梯度材料與埋入式感測 | zh_TW |
| dc.title | Material Property Measurement of Additive Manufacturing Applied on Functionally Graded Materials and Embedded Sensor | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馬劍清(Hsin-Tsai Liu),蔡佳霖(Chih-Yang Tseng) | |
| dc.subject.keyword | 積層製造,正交性材料,功能性梯度材料,共振頻率,應變規,埋入式感測, | zh_TW |
| dc.subject.keyword | additive manufacturing,orthotropic material,functionally graded material,resonant frequency,strain gauge,embedded sensor, | en |
| dc.relation.page | 155 | |
| dc.identifier.doi | 10.6342/NTU202101245 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0207202120183400.pdf | 12.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
