Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorYu-Chien Huangen
dc.contributor.author黃郁茜zh_TW
dc.date.accessioned2022-11-23T09:27:21Z-
dc.date.available2021-08-04
dc.date.available2022-11-23T09:27:21Z-
dc.date.copyright2021-08-04
dc.date.issued2021
dc.date.submitted2021-07-06
dc.identifier.citation[1] Amos, L. A., Amos, W. B. (1991). The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. J. Cell Sci., 98, 95-101. [2] Arbouet, A., Christofilos, D., Fatti, N. D., Vallée, F., Huntzinger, J. R., Arnaud, L., . . . Broyer, M. (2004). Direct measurement of the single-metal-cluster optical absorption. Phys. Rev. Lett., 93, 127401. [3] Arroyo, J. O., Cole, D., Kukura, P. (2016). Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat. Protoc., 11, 617-633. [4] Avci, O., Campana, M. I., Yurdakul, C., Ünlü, M. S. (2017). Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy. Optica, 4(2), 247-254. [5] Baffou, G., Bon, P., Savatier, J., Polleux, J., Zhu, M., Merlin, M., . . . Monneret, S. (2012). Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano, 6(3), 2452-2458. [6] Bai, Y., Zhang, D., Lan, L., Huang, Y., Maize, K., Shakouri, A., Cheng, J.-X. (2019). Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv., 5(7), No. eaav7127. [7] Birkhoff, R. D., Painter, L. R., Jr., J. M. (1978). Optical and dielectric functions of liquid glycerol from gas photoionization measurements. J. Chem. Phys., 69, 4185-4188. [8] Bohren, C. F., Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley. [9] Boyer, D., Tamarat, P., Maali, A., Lounis, B., Orrit, M. (2002). Photothermal imaging of nanometer-sized metal particles among scatterers. Science, 297(5584), 1160-1163. [10] Celebrano, M., Kukura, P., Renn, A., Sandoghdar, V. (2011). Single-molecule imaging by optical absorption. Nat. Photonics, 5, 95-98. [11] Cheng, C.-Y., Liao, Y.-H., Hsieh, C.-L. (2019). High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. Nanoscale, 11, 568-577. [12] Cole, D., Young, G., Weigel, A., Sebesta, A., Kukura, P. (2017). Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics, 4(2), 211-216. [13] Curtis, A. S. (1964). The mechanism of adhesion of cells to glass: A study by interference reflection microscopy. J. Cell Biol., 20(2), 199-215. [14] Evanoff, D. D., Chumanov, G. (2004). Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B, 13957-13962. [15] Gaiduk, A., Ruijgrok, P. V., Yorulmaz, M., Orrit, M. (2010). Detection limits in photothermal microscopy. Chem. Sci, 1, 343-350. [16] Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V., Orrit, M. (2010). Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science, 330(6002), 353-356. [17] Huang, Y.-C., Chen, T.-H., Juo, J.-Y., Chu, S.-W., Hsieh, C.-L. (2021). Quantitative imaging of single light-absorbing nanoparticles by widefield interferometric photothermal microscopy. ACS Photonics, 8(2), 592-602. [18] Huang, Y.-F., Zhuo, G.-Y., Chou, C.-Y., Lin, C.-H., Chang, W., Hsieh, C.-L. (2017). Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells. ACS Nano, 11(3), 2575-2585. [19] J. Rheims, J. K., Wriedt, T. (1997). Refractive-index measurements in the near-IR using an Abbe refractometer. Meas. Sci. Technol., 8, 601-605. [20] Jaesuk, H., Moerner, W. E. (2007). Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam. Opt. Commun., 280(2), 487-491. [21] Khadir, S., Andrén, D., Chaumet, P. C., Monneret, S., Bonod, N., Käll, M., . . . Baffou, G. (2020). Full optical characterization of single nanoparticles using quantitative phase imaging. Optica, 7(3), 243-248. [22] Kim, M., Lee, J.-H., Nam, J.-M. (2019). Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci., 6(17), 1900471. [23] Kukura, P., Celebrano, M., Renn, A., Sandoghdar, V. (2010). Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett., 1(23), 3323-3327. [24] Lasne, D., Blab, G. A., Giorgi, F. D., Ichas, F., Lounis, B., Cognet, L. (2007). Label-free optical imaging of mitochondria in live cells. Opt. Express, 15(21), 14184-14193. [25] Li, Z., Aleshire, K., Kuno, M., Hartland, G. V. (2017). Super-resolution far-field infrared imaging by photothermal heterodyne imaging. J. Phys. Chem. B, 121(37), 8838-8846. [26] Lin, Y.-H., Chang, W.-L., Hsieh, C.-L. (2014). Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express, 22(8), 9159-9170. [27] Lindfors, K., Kalkbrenner, T., Stoller, P., Sandoghdar, V. (2004). Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett., 93(3), 037401 [28] Mahmoodabadi, R. G., Taylor, R. W., Kaller, M., Spindler, S., Mazaheri, M., Kasaian, K., Sandoghdar, V. (2020). Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization. Opt. Express, 28(18), 25969-25988. [29] Mann, S. A., Sciacca, B., Zhang, Y., Wang, J., Kontoleta, E., Liu, H., Garnett, E. C. (2017). Integrating sphere microscopy for direct absorption measurements of single nanostructures. ACS Nano, 11(2), 1412-1418. [30] Ortega-Arroyo, J., Kukura, P. (2012). Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys., 14, 15625-15636. [31] Rakić, A. D., Djurišić, A. B., Elazar, J. M., Majewski, M. L. (1998). Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 37(22), 5271-5283. [32] Salmon, E., Tran, P. (2003). High-resolution video-enhanced differential interference contrast light microscopy. Methods in Cell Biology , 2, 289-318. [33] Scaffardi, L. B., Pellegri, N., Sanctis, O. d., Tocho, J. O. (2015). Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology, 15, 158-163. [34] Selmke, M., Braun, M., Cichos, F. (2012). Photothermal single-particle microscopy: detection of a nanolens. ACS Nano, 6(3), 2741-2749. [35] Shao, J., Xie, H., Huang, H., Li, Z., Sun, Z., Xu, Y., . . . Chu, P. K. (2016). Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun., 7, 12967. [36] Simin, F., Winful, H. G. (2001). Physical origin of the Gouy phase shift. Opt. Lett., 26(8), 485-487. [37] Stéphane Berciaud, L. C. (2004). Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett., 93, 257402. [38] Taylor, R. W., Sandoghdar, V. (2019). Interferometric scattering (iSCAT) microscopy and related techniques. In Astratov V., Label-Free Super-Resolution Microscopy, Springer. [39] Taylor, R. W., Sandoghdar, V. (2019). Interferometric scattering microscopy: seeing single nanoparticles and molecules via rayleigh scattering. Nano Lett., 19(8), 4827-4835. [40] Yorulmaz, M., Nizzero, S., Hoggard, A., Wang, L.-Y., Cai, Y.-Y., Su, M.-N., . . . Link, S. (2015). Single-particle absorption spectroscopy by photothermal contrast. Nano Lett., 15(5), 3041-3047. [41] Zhang, T., Che, Y., Chen, K., Xu, J., Xu, Y., Wen, T., . . . Li, X. (2020). Anapole mediated giant photothermal nonlinearity in nanostructured silicon. Nat. Commun., 11, 3027. [42] Duh, Y.-S., Nagasaki, Y., Tang, Y.-L., Wu, P.-H., Cheng, H.-Y., Yen, T.-H., . . . Chu, S.-W. (2020). Giant photothermal nonlinearity in a single silicon nanostructure. Nat. Commun., 11, 4101. [43] Jain, P. K., Lee, K. S., El-Sayed, I. H., El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:  applications in biological imaging and biomedicine. J. Phys. Chem. B, 110(14), 7238-7248. [44] Ando, J., Nakamura, A., Visootsat, A., Yamamoto, M., Song, C., Murata, K., Iino, R. (2018). Single-nanoparticle tracking with angstrom localization precision and microsecond time resolution. Biophys. J., 115(12), 2413-2427. [45] Braslavsky, I., Amit, R., Ali, B. M., Gileadi, O., Oppenheim, A., Stavans, J. (2001). Objective-type dark-field illumination for scattering from microbeads. Appl. Opt., 40(31), 5650-5657. [46] Meng, X., Sonn-Segev, A., Schumacher, A., Cole, D., Young, G., Thorpe, S., . . . Kukura, P. (2021). Micromirror total internal reflection microscopy for high-performance single particle tracking at interfaces. arXiv:2103.09738
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80122-
dc.description.abstract吸收是光和物質基本的交互作用之一,藉由量測物質的吸收特性,我們便能區分不同材料組成及結構。定量奈米物體的吸收通常是仰賴比爾-朗伯定律:量測光在通過大量奈米物體後的衰減量。雖然這個方法相當直接有效,但它量測的結果是眾多奈米物體吸收的平均,缺乏單一奈米粒子的解析度,也因此無法得知個別奈米粒子之間的不同。量測單一奈米粒子的吸收十分困難,因為奈米粒子的吸收截面積比可見光的繞射極限小了數個數量級,因此很難在奈米尺度下直接量測吸收。 光熱顯微術(photothermal microscopy)是一種能夠定量量測奈米材料吸收的技術,利用泵探針(pump-probe)的原理來量測因光吸收而造成的散射變化。當加熱泵束(pump beam)被樣品吸收後,樣品釋放出的熱改變周圍介質的折射率,即為熱透鏡效應(thermal lens effect),再利用探測光束(probe beam)去偵測因熱透鏡生成而造成的光散射變化。然而,量測奈米材料的微小散射場變化通常必須利用對相位高度敏感的干涉技術來達成,這使得定量闡釋光熱訊號十分不容易。 在這篇論文中,我們利用寬場干涉光熱顯微術量測不同大小的金屬奈米粒子(金、銀奈米粒子)的光熱訊號。實驗數據顯示:對於很小的奈米粒子(在我們系統為小於40奈米的粒子)而言,光熱訊號是由熱透鏡的散射場所貢獻,也就是源自於奈米粒子逸散出的熱,且和加熱泵束的光強及樣品的吸收截面積成正比,與粒子的尺寸和材料無關。我們利用影像差頻鎖相偵測法(image-based difference-frequency lock-in detection)來提升信號雜訊比,能夠在寬場照明下量測到5奈米金粒子的吸收。此外,我們建立了一個模型來解釋實驗數據,證實光熱訊號的本質是熱透鏡所導致的散射場透過干涉影像偵測所造成的結果。我們更進一步研究大粒子(40奈米至100奈米)的光熱訊號,在這個區間,奈米粒子的散射場已經無法被忽視且與探測光束光強相當,此時,熱透鏡的散射場會與奈米粒子的散射場互相干涉,造成光熱訊號的放大。這個事實指出光熱訊號不僅只和樣品吸光後所逸散出的熱有關,樣品與環境的散射特性也會影響光熱訊號,所以若要定量量測奈米尺度的吸收,樣品本身的散射性質必須同時被考慮進光熱量測模型中。這個研究成果將有助於未來在不均勻環境的複雜樣品中,進行定量且準確的吸收量測研究。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:27:21Z (GMT). No. of bitstreams: 1
U0001-0507202118521000.pdf: 4562294 bytes, checksum: 60974cccecbc359f9db81d7e099958fc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書................................................................# 誌謝..........................................................................i 中文摘要.....................................................................ii ABSTRACT.....................................................................iv CONTENTS....................................................................vii LIST OF FIGURES...............................................................x LIST OF TABLES..............................................................xii Chapter 1 Introduction........................................................1 1.1 Scattering and absorption of light of small particles.....................1 1.2 Photothermal detection....................................................4 1.3 Thesis structure..........................................................8 Chapter 2 Principle of interferometric detection of scattering signal........10 2.1 Scattering-based microscopy: darkfield and interferometric microscopy....10 2.2 Coherent brightfield microscopy (COBRI)..................................14 2.2.1 Interferometric scattering detection and contrast enhancement..........14 2.2.2 COBRI contrast.........................................................17 2.2.3 Signal-to-noise ratio (SNR)............................................20 Chapter 3 Mechanisms of photothermal signal generation and detection.........23 3.1 The role of interference in photothermal contrast........................23 3.1.1 Interference regime....................................................24 3.1.2 Darkfield-like regime..................................................27 3.2 Lock-in detection in photothermal measurement............................28 3.2.1 Image-based lock-in detection..........................................28 3.2.2 Dual-frequency lock-in detection.......................................30 Chapter 4 Experimental methods...............................................33 4.1 Sample preparation.......................................................33 4.2 Widefield interferometric photothermal microscopy........................34 4.2.1 Coherent brightfield microscopy (COBRI)................................35 4.2.2 Addition of a heating beam for photothermal detection..................38 4.2.3 Z-module...............................................................38 4.3 Image data analysis......................................................40 Chapter 5 Results and discussion.............................................43 5.1 Characterization of widefield interferometric photothermal microscopy....43 5.2 Quantitative absorption measurements of single metallic nanoparticles....45 5.2.1 Interference regime....................................................46 5.2.2 Darkfield-like regime..................................................49 5.3 Noise floor of photothermal detection....................................54 5.4 Detection sensitivity and SNR............................................55 5.5 Comparison with laser-scanning photothermal detection....................58 Chapter 6 Conclusion.........................................................60 Reference....................................................................63
dc.language.isoen
dc.subject奈米粒子zh_TW
dc.subject光熱顯微術zh_TW
dc.subject干涉散射顯微術zh_TW
dc.subject同調式明場顯微術zh_TW
dc.subject光散射zh_TW
dc.subject光吸收zh_TW
dc.subjectscatteringen
dc.subjectnanoparticlesen
dc.subjectabsorptionen
dc.subjectphotothermal microscopyen
dc.subjectcoherent brightfield microscopyen
dc.subjectinterferometric scattering microscopyen
dc.title利用寬場干涉光熱顯微術定量單一奈米粒子吸收影像zh_TW
dc.titleQuantitative Absorption Imaging of Single Nanoparticles by Widefield Interferometric Photothermal Microscopyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.advisor-orcid朱士維(0000-0001-7728-4329)
dc.contributor.coadvisor謝佳龍(Chia-Lung Hsieh)
dc.contributor.coadvisor-orcid謝佳龍(0000-0002-6757-8689)
dc.contributor.oralexamcommittee黃承彬(Hsin-Tsai Liu),呂宥蓉(Chih-Yang Tseng),駱遠
dc.subject.keyword光熱顯微術,干涉散射顯微術,同調式明場顯微術,光散射,光吸收,奈米粒子,zh_TW
dc.subject.keywordphotothermal microscopy,interferometric scattering microscopy,coherent brightfield microscopy,scattering,absorption,nanoparticles,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202101282
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-0507202118521000.pdf4.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved