Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorAngela Huangen
dc.contributor.author黃安祺zh_TW
dc.date.accessioned2022-11-23T09:26:56Z-
dc.date.available2022-03-07
dc.date.available2022-11-23T09:26:56Z-
dc.date.copyright2022-03-07
dc.date.issued2022
dc.date.submitted2022-02-14
dc.identifier.citationAbhishek, K.; Singh, M.P.; Ghosh, S.; Anand, A. Weather forecasting model using artificial neural network. Procedia Technology 2012, 4, 311-318. Agnolucci, P.; Rapti, C.; Alexander, P.; De Lipsis, V.; Holland, R. A.; Eigenbrod, F.; Ekins, P. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food 2020, 1(9), 562-571. Albrecht, T.R.; Crootof, A.; Scott, A.C. The Water-Energy-Food Nexus: A Systematic Review of Methods for Nexus Assessment. Environ. Res. Lett. 2018, 13, 043002, doi:10.1088/1748-9326/aaa9c6. Alexander, L.V.; Uotila, P.; Nicholls, N.; Lynch, A. A new daily pressure dataset for Australia and its application to the assessment of changes in synoptic patterns during the last century. J. Clim. 2010, 23(5), 1111-1126. Allan, T.; Keulertz, M.; Woertz, E. The water-food-energy nexus: an introduction to nexus concepts and some conceptual and operational problems. International Journal of Water Resources Development, 2015, 31(3), 301-311. Amadei, B. A Systems Approach to Modeling the Water-Energy-Land-Food Nexus: System Dynamics Modeling and Dynamic Scenario Planning, 1st ed.; Momentum: New York, NY, USA, 2019, Vol.1–2. Asian Development Bank. Thinking about water differently: Managing the water–food–energy nexus, Asian Development Bank (ADB), Mandaluyong City, Philippines. 2013. Astee, L.Y.; Kishnani, N.T. Building-integrated agriculture: Utilizing rooftops for sustainable food crop cultivation in Singapore. Journal of Green Building. 2010, 5, 105–113. doi:10.3992/jgb.5.2.105 Badami, M.G.; Ramankutty, N. Urban agriculture and food security: A critique based on an assessment of urban land constraints. Glob. Food Sec. 2015, 4, 8-15. Barrios, S.; Ouattara, B.; Strobl, E. The impact of climatic change on agricultural production: Is it different for Africa? Food policy 2008, 33(4), 287-298. Bhaduri, A., Ringler, C., Dombrowski, I., Mohtar, R., Scheumann, W. Sustainability in the water-energy-food nexus. Water International, 2015, 40(5-6), 723-732. Bizikova, L., Roy, D., Swanson, D., Venema, H. D., McCandless, M. (2013) The water-energy-food security nexus: Towards a practical planning and decision-support framework for landscape investment and risk management. International Institute for Sustainable Development. Blicharska, M., Smithers, R. J., Hedblom, M., Hedenås, H., Mikusiński, G., Pedersen, E. Svensson, J. “Shades of grey challenge practical application of the cultural ecosystem services concept”. Ecosystem Services, 23, 55-70, 2017. Board, M. A. Millennium ecosystem assessment. Washington, DC: New Island, 13, 2005. Borah, N.; Sahai, A.; Chattopadhyay, R.; Joseph, S.; Abhilash, S.; Goswami, B. A self-organizing map–based ensemble forecast system for extended range prediction of active/break cycles of Indian summer monsoon. J. Geophys. Res. Atmos. 2013, 118(16), 9022-9034. Botterill, L. Evidence-Based Policy. Oxford Research Encyclopedia of Politics. Ed. 2017. http://politics.oxfordre Cassano, E.N.; Glisan, J.M.; Cassano, J.J.; Gutowski Jr, W.J.; Seefeldt, M.W. Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Clim. Res. 2015 62(3), 199-218. Cavazos, T. Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. J. Clim. 2000, 13(10), 1718-1732. Chamas, Z.; Najm, M.A.; Al-Hindi, M.; Yassine, A.; Khattar, R. Sustainable Resource Optimization under Water-Energy-Food-Carbon Nexus. J. Clean. Prod. 2021, 278, 123894. Chang, C.S. Cultivation of Potato Leaves in Yilan Area. Bull. Hualien Dist. Agric. Res. Ext. Stn. 2005, 47, 1–3. Chang, F.J.; Chang, L.C.; Huang, C.W.; Kao, I.F. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. Journal of Hydrology, 2016, 541, 965-976. Chang, F.J.; Chang, L.C.; Kang, C.C.; Wang, Y.S.; Huang, A. Explore spatio-temporal PM2. 5 features in northern Taiwan using machine learning techniques. Sci. Total Environ. 2020, 736, 139656. Chang, F.J.; Chang, L.C.; Kao, H.S.; Wu, G.R. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology. 2010, 384, 118–129. Chang, F.J.; Tsai, M. J.; Tsai, W. P.; Herricks, E.E. Assessing the ecological hydrology of natural flow conditions in Taiwan. Journal of Hydrology. 2008, 354,(1-4), 75-89. Chang, F.J.; Tsai, M.J. A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques. Journal of Hydrology. 2016, 535, 256-269. Chang, L.C.; Chang, F.J.; Yang, S.N.; Tsai, F.H.; Chang, T.H.; Herricks, E.E. Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. Nature Communication. 2020, 11(1), 1-13. Chang, L.C.; Shen, H.Y.; Chang, F.J.: Regional flood inundation nowcast using hybrid SOM and dynamic neural networks, Journal of Hydrology. 2014, 519, 476–489. Chang, L.C.; Wang, W.H.; Chang, F.J. Explore training self-organizing map methods for clustering high-dimensional flood inundation maps. Journal of Hydrology. 2021, 595, 125655. Chang, Y.; Li, G.; Yao, Y.; Zhang, L.; Yu, C. Quantifying the Water-Energy-Food Nexus: Current Status and Trends. Energies, 2016, 9, 65. Chang, Y.; Li, G.; Yao, Y.; Zhang, L.; Yu, C. Quantifying the Water-Energy-Food Nexus: Current Status and Trends. Energies 2016, 9, 65, doi:10.3390/en9020065. Château, P. A.; Wunderlich, R.F.; Wang, T.W.; Lai, H.T.; Chen, C.C.; Chang, F.J. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Science of the total environment, 2019(687), 654-666. Chattopadhyay, A.; Hassanzadeh, P.; Pasha, S. Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. Sci. Rep. 2020, 10(1), 1-13. Chen, C.; Lei, P.K. Evaluation of the Growth Models for Packhoi. J. Agric. For. 1997, 46, 65–83. Chen, Y.H.; Chang, F.J. Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology, 2009(367)(1-2), 125-137. Chiang, Y.M.; Chang, F.J.; Jou, B.J. D.; Lin, P. F. Dynamic ANN for precipitation estimation and forecasting from radar observations. J. Hydrol. 2007, 334(1-2), 250-261. Chun, J. Y., C. Lee and C. F. Yang, Study on Efficiency Analysis of the Solar Photovoltaic System at Tainan DARES, COA (臺南區農業改良場太陽光系統發電系統發電效率分析), Tainan District Agricultural Research and Extension Station Report (No.66) (行政院農業委員會臺南區農業改良場研究彙報第66號,研究報告第228號), 2015. Chun, J.Y.; Lee, C.; Yang, C.F. Study on Efficiency Analysis of the Solar PV System at Tainan DARES, COA. Res. Bull. Tainan Dist. Agric. Improv. Stn. 2015, 66, 68–76. CWB Observation Data Inquire System. Available online: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (accessed on 1August 2019) da Cruz, S.M.S.; Steglich, A.; Cruz, P.V.; Vieira, A.C.M. Investigating the challenges and opportunities of urban agriculture in global north and global south countries. In Frontiers of Science and Technology: Reports on Technologies for Sustainability–Selected extended papers from the Brazilian-German Conference on Frontiers of Science and Technology Symposium (BRAGFOST); Kanoun, O., Viehweger, C., Eds; Walter de Gruyter GmbH Co KG.: Berlin, 2017; pp. 95–110. Das, H.P.; Doblas-Reyes, F.J.; Garcia, A.; Hansen, J.; Mariani, L.; Nain, A.S.; Ramesh, K.; Rathore,L.S.,Venkataraman, R. Chapter 5: Weather and climate forecasts for agriculture. Guide to agricultural, meteorological practices. Book: Ed. Gommes, R.; Challinor, A.; Das, H.; Dawod, M. A.; Mariani, L.; Tychon, B.; Trampf, W. Guide to Agricultural Meteorological Practices. World Meteorological Organization, 134. Published by: WMO ; 2012 (2010 edition) Available online: https://library.wmo.int/doc_num.php?explnum_id=3996 (accessed on Oct 22, 2021). Department of Budget, Accounting Statistics, Taipei City Government (DBAS). Total Area of the Current Constructed Buildings in Taipei City. Available online: http://163.29.157.32:8080/dataset/42f8c7ce-9354-4147-aad4-04c74c549050 (accessed on 12 July 2021). Doan, Q.V.; Kusaka, H.; Sato, T.; Chen, F. A structural self-organizing map algorithm for weather typing. Geosci. Model Dev. 2021,14(4), 2097-2111. Edmondson, J.L.; Cunningham, H.; Tingley, D.O.D.; Dobson, M.; Grafius, D.R.; Leake, J.R.; McHugh, N.; Nickles, J.; Phoenix, G.K.; Ryan, A.J.; et al. The Hidden Potential of Urban Horticulture. Nat. Food 2020, 1, 155–159, doi:10.1038/s43016-020-0045-6. Ellis, F.; Sumberg, J. Food production, urban areas and policy responses. World Development 1998, 26(2), 213-225. Elsayed, H.; Djordjevic, S.; Savic, D. The Nile System Dynamics Model for Water-Food-Energy Nexus Assessment. Available online: https://ore.exeter.ac.uk/repository/bitstream/handle/10871/122995/The_Nile_System_Dynamics_Model_for_Water-Food-Energy_Nexus_Assessment.pdf?sequence=2 isAllowed=y (accessed on 12, July, 2021). 2018. Endo, A., Burnett, K., Orencio, P.M., Kumazawa, T., Wada, C. A., Ishii, A., Tsurita, I., Taniguchi, M. (2015). Methods of the Water-Energy-Food Nexus. Water, 7, 5806-5830. Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A Review of the Current State of Research on the Water, Energy, and Food Nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30, doi:10.1016/j.ejrh.2015.11.010. Endo, A.; Yamada, M.; Miyashita, Y.; Sugimoto, R.; Ishii, A.; Nishijima, J.; Fujii, M.; Kato, T.; Hamamoto, H.; Kimura, M.; et al.; Dynamics of Water–Energy–Food Nexus Methodology, Methods, and Tools. Curr. Opin. Environ. Sci. Health 2020, 13, 46–60. Environmental and Energy Study Institute (EESI), “Green Infrastructure can Yield Multiple Benefits in an Environmentally-Friendly Way—Three Examples of Green Infrastructure in Action, 2018. https://www.eesi.org/articles/view/green-infrastructure-can-yield-multiple-benefits-in-an-environmentally-frie Fabiola, R., De Rosa, D. (2016). How the nexus of water/food/energy can be seen with the perspective of people well being and the Italian BES framework. Agriculture and Agricultural Science Procedia, 8, 732-740. Fan, C.; Fan, S.-K.S.; Wang, C.-S.; Tsai, W.-P. Modeling Computer Recycling in Taiwan Using System Dynamics. Resour. Conserv. Recycl. 2018, 128, 167–175, doi:10.1016/j.resconrec.2016.09.006. FAO, Urban and peri-urban agriculture, IV. Characteristics of urban and peri-urban agriculture. 2020. Available online: http://www.fao.org/unfao/bodies/coag/coag15/x0076e.htm (accessed on Sep 21, 2021) FAO. (2011). Climate change, water and food security. FAO Water Report 36, Rome. FAO. (2014a). The water-energy-food nexus - A new approach in support of food security and sustainable agriculture. FAO, Rome. http://www.fao.org/nr/water/docs/FAO_nexus_concept.pdf. FAO. (2014b). The Water-energy-food Nexus: a New Approach in Support of Food Security and Sustainable Agriculture. FAO, Rome. 29 Fassnacht, S.R. Derry, J.E. Defining similar regions of snow in the Colorado River Basin using self-organizing maps. Water Resour. Res. 2010, 46, W04507, doi:10.1029/2009WR007835, ISSN 0043-1397 Francik, S.; Kurpaska, S. The use of artificial neural networks for forecasting of air temperature inside a heated foil tunnel. Sensors, 2020, 20(3), 652. Frisvold, G.B.; Murugesan, A. Use of weather information for agricultural decision making. Weather Clim. Soc. 2013, 5(1), 55-69. Gary, I.E.; Grigg, N.; Reagan, W. Dynamic Behavior of the Water-Food-Energy Nexus: Focus on Crop Production and Consumption. Irrig. Drain. 2017, 66, 19–33. Geographical Overview of Taipei City Government. Available online: https://english.gov.taipei/cp.aspx?n=027E522DD6E3D3E1 (accessed on 12 July 2021). Gibson, P.B.; Perkins‐Kirkpatrick, S.E.; Uotila, P.; Pepler, A.S.; Alexander, L. V. On the use of self‐organizing maps for studying climate extremes. J. Geophys. Res. Atmos. 2017, 122(7), 3891-3903. Givens, J.E.; Padowski, J.; Guzman, C.D.; Malek, K.; Witinok-Huber, R.; Cosens, B.; Briscoe, M.; Boll, J.; Adam, J. Incorporating Social System Dynamics in the Columbia River Basin: Food-Energy-Water Resilience and Sustainability Modeling in the Yakima River Basin. Front. Environ. Sci. 2018, 6, doi:10.3389/fenvs.2018.00104. González-Rosell, A.; Blanco, M.; Arfa, I. Integrating Stakeholder Views and System Dynamics to Assess the Water–Energy–Food Nexus in Andalusia. Water 2020, 12, 3172, doi:10.3390/w12113172. Grewal, S.S.; Grewal, P.S. Can Cities become Self-Reliant in Food? Cities 2012, 29, 1–11. Haigh, T.; Takle, E.; Andresen, J.; Widhalm, M.; Carlton, J. S.; Angel, J. Mapping the decision points and climate information use of agricultural producers across the US Corn Belt. Clim. Risk Manag. 2015, 7, 20-30. Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A Review of the Water-Energy Nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331, doi:10.1016/j.rser.2016.07.020. Heikkinen, M.; Poutiainen, H.; Liukkonen, M.; Heikkinen, T.; Hiltunen, Y.; Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process. Math. Comput. Simul. 2011, 82 (3), 450–459. Hewitson, B.C.; Crane, R. Self-organizing maps: applications to synoptic climatology. Clim. Res. 2002, 22(1), 13-26. Hidalgo, D.R.; Cortés, B.B.; Bravo, E.C. Dimensionality reduction of hyperspectral images of vegetation and crops based on self-organized maps. Inf. Process. Agric. 2021, 8, 310–327. Higgins, C.; Najm, M.A. An Organizing Principle for the Water-Energy-Food Nexus. Sustainability 2020, 12, 8135, doi:10.3390/su12198135. Ho, C.H., Lur, H.S., Yao, M.H., Liao, F.C., Lin, Y.T., Yagi, N., Lu, H.J. (2017). The impact on food security and future adaptation under climate variation: a case study of Taiwan’s agriculture and fisheries. Mitigation and Adaptation Strategies for Global Change, 1–37. Hsu, K.C.; Li, S.T. Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Adv. Water Resour. 2010, 33(2), 190-200. Huang, A., Chang, F. J. Prospects for Rooftop Farming System Dynamics: An Action to Stimulate Water-Energy-Food Nexus Synergies toward Green Cities of Tomorrow. Sustainability 2021, 13(16), 9042. Huang, A., Chang, F. J. Using a Self-Organizing Map to Explore Local Weather Features for Smart Urban Agriculture in Northern Taiwan. Water 2021, 13(23), 3457. Irrigation Water Management: Irrigation Water Needs, Training manual no.3; Chapter 3: Crop Water Needs. Available online: http://www.fao.org/3/S2022E/s2022e07.htm#chapter%203:%20crop%20water%20needs (accessed on 12 July 2021). Kakar, S.A.; Sheikh, N.; Naseem, A.; Iqbal, S.; Rehman, A.; Kakar, A.U.; Kakar, B.A.; Kakar, H.A.; Khan, B. Artificial neural network based weather prediction using Back Propagation Technique. Int. J. Adv. Comput. Sci. Appl. 2018, 462-470. Kan, C.E.; Chen, C.T.; Chen. K.Y. Study on the Suitability of Consumptive Use Estimation Methods for Taiwan Area. J. Chin. Agric. Eng. 1996, 46, 8–19. Kennedya, C., Pincetlb, S., Bunjeb, P. (2011) The study of urban metabolism and its applications to urban planning and design. Environmental Pollution, 159, 1965-1973. Kirkwood, C.W. (1998). System Dynamics Methods: A Quick Introduction. College of Business, Arizona State University. Kliskey, A.; Williams, P.; Griffith, D.; Dale, V.; Schelly, C.; Marshall, A.-M.; Gagnon, V.; Eaton, W.; Floress, K. Thinking Big and Thinking Small: A Conceptual Framework for Best Practices in Community and Stakeholder Engagement in Food, Energy, and Water Systems. Sustainability 2021, 13, 2160, doi:10.3390/su13042160. Kohonen, T. A simple paradigm for the self-organized formation of structured feature maps, In Competition and cooperation in neural nets, Springer; 1982; pp. 248–266. Kohonen, T. Self-organizing maps, 3rd ed.; Springer-Verlag: Berlin, 2001. Kuo, T.C.; Lin, S.-H.; Tseng, M.-L.; Chiu, A.S.; Hsu, C.-W. Biofuels for Vehicles in Taiwan: Using System Dynamics Modeling to Evaluate Government Subsidy Policies. Resour. Conserv. Recycl. 2019, 145, 31–39, doi:10.1016/j.resconrec.2019.02.005. Kurian, M. (2017). The water-energy-food nexus: Trade-offs, thresholds and transdisciplinary approaches to sustainable development. Environmental Science Policy, 68, 97-106. Lakshminarayanan, S. Application of self-organizing maps on time series data for identifying interpretable driving manoeuvres. Eur. Transp. Res. Rev. 2020, l12(1), 1-11. Lal, R. Home Gardening and Urban Agriculture for Advancing Food and Nutritional Security in Response to the COVID-19 Pandemic. Food Secur. 2020, 12, 871–876, doi:10.1007/s12571-020-01058-3. Lawford, R.G. A Design for a Data and Information Service to Address the Knowledge needs of the Water-Energy-Food (W-E-F) Nexus and Strategies to Facilitate its Implementation. Front. Environ. Sci. 2019, 7, 56. Li, B.J., Sun, C.B., Qi, X.J., et al. (2012). Preliminary study on roof agriculture. Acta Agriculturae Slovenica, 24, 449–454. Li, Y.; Babcock, R.W. Green Roofs against Pollution and Climate Change. A Review. Agron. Sustain. Dev. 2014, 34, 695–705, doi:10.1007/s13593-014-0230-9. Liu, J.N.; Hu, Y.; You, J.J.; Chan, P.W. Deep neural network based feature representation for weather forecasting. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 1). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2014. Liu, T.; Yang, M.; Han, Z.; Ow, D.W. Rooftop production of leafy vegetables can be profitable and less contaminated than farm-grown vegetables. Agronomy for Sustainable Development, 2016, 36-41. doi:10.1007/s13593-016-0378-6. Liu, X.; Zhang, R.; Li, Y.; Ao, Y. Establishment and Application of Discrimination Model for Suitable Culture Season of Vegetables Based on the Climatic Data. Chin. Agric. Sci. Bul. 2012, 28, 230–235. Liu, Y.; Weisberg, R. H. A review of self-organizing map applications in meteorology and oceanography. In Self-Organizing Maps: Applications and Novel Algorithm Design, Mwasiagi, J.I., Ed.; IntechOpen. 2011. 1, pp. 253-272. DOI: 10.5772/13146. Available online: https://www.intechopen.com/chapters/13302 (accessed on February 2020) Lo, C.S. Technology for Organic Vegetable Production in Plastic House. Conference Paper for the Organic Crops Cultivation Seminar. Taoyuan Dist. Agric. Res. Ext. Stn. 2008, 136, 47–60. Loikith, P.C.; Lintner, B.R.; Sweeney, A. Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Clim. 2017, 30(8), 2829-2847. Lonij, V.P.A.; Fiot, J.-B. Cognitive Systems for the Food-Water-Energy Nexus. “Chapter 8 - Cognitive Systems for the Food–Water–Energy Nexus”, IBM Research, Ireland. Cognitive Computing: Theory and Applications, Handb. Stat. 2016, 35, 255–282.. Lupia, F.; Baiocchi, V.; Lelo, K.; Pulighe, G. Exploring Rooftop Rainwater Harvesting Potential for Food Production in Urban Areas. Agriculture, 2017, 7(46). Lupia, F.; Baiocchi, V.; Lelo, K.; Pulighe, G. Exploring Rooftop Rainwater Harvesting Potential for Food Production in Urban Areas. Agriculture 2017, 7, 46, doi:10.3390/agriculture7060046. McCarl, B.A.; Yang, Y.; Schwabe, K.; Engel, B.A.; Mondal, A.H.; Ringler, C.; Pistikopoulos, E.N. Model Use in WEF Nexus Analysis: A Review of Issues. Curr. Sustain. Energy Rep. 2017, 4, 144–152, doi:10.1007/s40518-017-0078-0. Meadows, D.H.. Thinking in Systems: A Primer. Sustainability Institute. 2009. Mohan, P.; Patil, K.K. Deep learning based weighted SOM to forecast weather and crop prediction for agriculture application. Int. J. Intell. Eng. Syst. 2018, 11, 167-176. Mohareb, E.; Heller, M.; Novak, P.; Goldstein, B.; Fonoll, X.; Raskin, L. Considerations for Reducing Food System Energy Demand while Scaling up Urban Agriculture. Environ. Res. Lett. 2017, 12, 125004, doi:10.1088/1748-9326/aa889b. Mortada, S.; Najm, M.A.; Yassine, A.; El Fadel, M.; Alamiddine, I. Towards Sustainable Water-Food Nexus: An Optimization Approach. J. Clean. Prod. 2018, 178, 408–418, doi:10.1016/j.jclepro.2018.01.020. Namany, S.; Al-Ansari, T.; Govindan, R. Sustainable Energy, Water and Food Nexus Systems: A Focused Review of Decision-Making Tools for Efficient Resource Management and Governance. J. Clean. Prod. 2019, 225, 610–626, doi:10.1016/j.jclepro.2019.03.304. Narvekar, M.; Fargose, P. Daily Weather Forecasting using Artificial Neural Network. Int. J. Comput. Appl. 2015, 121(22), 9-13. National Development Council (國家發展委員會人口推估查詢系統). 2018.8. https://pop-proj.ndc.gov.tw/dataSearch.aspx?r=2 uid=2104 pid=59 Newell, J.P.; Goldstein, B.P.; Foster, A. A 40-Year Review of Food–Energy–Water Nexus Literature and its Application to the Urban Scale. Environ. Res. Lett. 2019, 14, 073003, doi:10.1088/1748-9326/ab0767. Newell, J.P.; Ramaswami, A. Urban Food–Energy-Water Systems: Past, Current, and Future Research Trajectories. Environ. Res. Lett. 2020, 15, 050201. Nguyen-Le, D.; Yamada, T.J. Using weather pattern recognition to classify and predict summertime heavy rainfall occurrence over the Upper Nan river basin, northwestern Thailand. Weather Forecast 2019, 34, 345–360. Ohba, M.; Sugimoto, S. Differences in climate change impacts between weather patterns: possible effects on spatial heterogeneous changes in future extreme rainfall. Clim. Dynam. 2019, 52, 4177–4191. Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.G.; Gianquinto, G.P. Exploring the Production Capacity of Rooftop Gardens (RTGs) in Urban Agriculture: The Potential Impact on Food and Nutrition Security, Biodiversity and Other Ecosystem Services in the City of Bologna. Food Secur. 2014, 6, 781–792, doi:10.1007/s12571-014-0389-6. Pearson, L.J.; Pearson, L.; Pearson, C.J. Sustainable urban agriculture: stocktake and opportunities. Int. J. Sustain. Agric. Res. 2010, 8(1-2), 7-19. Pluchinotta, I.; Pagano, A.; Giordano, R.; Tsoukiàs, A. A System Dynamics Model for Supporting Decision-Makers in Irrigation Water Management. J. Environ. Manag. 2018, 223, 815–824, doi:10.1016/j.jenvman.2018.06.083. Ponmalai, R.; Kamath, C. Self-organizing maps and their applications to data analysis (No. LLNL-TR-791165). Lawrence Livermore National Lab.: Livermore, CA (United States). 2019. Pulighe, G.; Lupia, F. Food First: COVID-19 Outbreak and Cities Lockdown a Booster for a Wider Vision on Urban Agriculture. Sustainability 2020, 12, 5012, doi:10.3390/su12125012. Ramos, E.P.; Howells, M.; Sridharan, V.; Engström, R.E.; Taliotis, C.; Mentis, D.; Gardumi, F.; De Strasser, L.; Pappis, I.; Balderrama, G.P.; et al. The Climate, Land, Energy, and Water systems (CLEWs) Framework: A Retrospective of Activities and Advances to 2019. Environ. Res. Lett. 2020, doi:10.1088/1748-9326/abd34f. Ravar, Z.; Zahraie, B.; Sharifinejad, A.; Gozini, H.; Jafari, S. System Dynamics Modeling for Assessment of Water–Food–Energy Resources Security and Nexus in Gavkhuni Basin in Iran. Ecol. Indic. 2019, 108, 105682, doi:10.1016/j.ecolind.2019.105682. Rawson, H.M.; Macpherson, H.G.; FAO. Irrigated Wheat. Section 6: Explanations of Plant Development. Available online: http://www.fao.org/3/x8234e/x8234e09.htm#TopOfPage (accessed on 10 March 2021). Reddy, P.C.; Sureshbabu, A. An adaptive model for forecasting seasonal rainfall using predictive analytics. Int. J. Intell. Syst. 2019, 22-32. Richmond, B. An Introduction to Systems Thinking with iThink; Isee Systems Inc.: Lebanon, PA, USA, 2004. Riyazuddin, Y.M.; Basha, S.M.; Reddy, K.K. An approach for prediction of weather system by using back propagation neural network. Int. J. Sci. Dev. Res. 2017, 2(7), 117-121. Romero-Lankao, P.; McPhearson, T.; Davidson, D.J. The Food-Energy-Water Nexus and Urban Complexity. Nat. Clim. Chang. 2017, 7, 233–235, doi:10.1038/nclimate3260. Rubem, A.P.S.; de Moura, A.L.; de Oliveira, E.; de Mello, J.S.; Alves, L.A.; Tavares, R.S. Productive performance of small peri-urban farms using self-organizing maps and data envelopment analysis. WIT Trans. Ecol. Environ. 2015, 192, 133–145. Ruß, G.; Kruse, R.; Schneider, M.; Wagner, P. Visualization of agriculture data using self-organizing maps. In International Conference on Innovative Techniques and Applications of Artificial Intelligence; Allen, T., Ellis, R., Petridis, M. Eds.; Springer: London, 2008; pp. 47-60. Santafé, M.R., Soler, J.B.T., Romero, F.J.S., Gisbert, P.S.F., Gozálvez, J.J.F., Gisbert, C.M.F. (2014a). Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, 67, 246-255. Sanyé-Mengual, E., Cerón-Palma, I., Oliver-Solà, J., Montero, J.I., Rieradevall, J. (2015a). Integrating horticulture into cities: a guide for assessing the implementation potential of rooftop greenhouses (RTGs) in industrial and logistics parks. Journal of Urban Technololgy, 22(1), 87–11. doi:10.1080/10630732.2014.942095 Sanye-Mengual, E., Orsini, F., Oliver-Sola, J., Rieradevall, J., Ignacio, Montero, J., Gianquinto, G. (2015b). Techniques and crops for efficient rooftop gardens in Bologna, Italy. Agronomy for Sustainable Development, 35(4), 1477–1488. doi:10.1007/s13593-015-0331-0 Sanyé-Mengual, E.; Cerón-Palma, I.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. Environmental Analysis of the Logistics of Agricultural Products from Rooftop Greenhouses in Mediterranean Urban Areas. Journal of the Science of Food and Agriculture. 2013, 93, 100–109. Sanye-Mengual, E.; Orsini, F.; Oliver-Sola, J.; Rieradevall, J.; Montero, J.I.; Gianquinto, G. Techniques and Crops for Efficient Rooftop Gardens in Bologna, Italy. Agron. Sustain. Dev. 2015, 35, 1477–1488. Satizábal, H.; Barreto-Sanz, M.; Jiménez, D.; Pérez-Uribe, A.; Cock, J. Enhancing decision-making processes of small farmers in tropical crops by means of machine learning models. In Technologies and innovations for development; Springer: Paris, 2012; pp. 265-277. Satterthwaite, D., McGranahan, G., Tacoli, C. (2010). Urbanization and its implications for food and farming. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1554), 2809-2820. Sheridan, S. C.; Lee, C. C. The self-organizing map in synoptic climatological research. Prog. Phys. Geogr. 2011, 35(1), 109-119. Skific, N.; Francis, J. Self-Organizing Maps: A Powerful Tool for the Atmospheric Sciences, Applications of Self-Organizing Maps, Magnus Johnsson, Ed.; IntechOpen, 2012. DOI: 10.5772/54299. Available online: https://www.intechopen.com/chapters/40865#B7 (accessed on February 2020) Specht, K.; Schimichowski, J.; Fox-Kämper, R. Multifunctional Urban Landscapes: The Potential Role of Urban Agriculture as an Element of Sustainable Land Management. In Sustainable Land Management in a European Context. Human-Environment Interactions; Weith, T., Barkmann, T., Gaasch, N., Rogga, S., Strauß, C., Zscheischler, J., Eds.; Springer: Basel, Switzerland, 2021; 8, pp. 291–303. Sterman, J.D. System Dynamics Modeling: Tools for Learning in a Complex World. Calif. Manag. Rev. 2001, 43, 8–25, doi:10.2307/41166098. Sun, Y.; Liu, N.; Shang, J.; Zhang, J. Sustainable Utilization of Water Resources in China: A System Dynamics Model. J. Clean. Prod. 2017, 142, 613–625, doi:10.1016/j.jclepro.2016.07.110. Taipei Agricultural Products Marketing Co., LTD (TAPM). Available online: http://www.tapmc.com.taipei/Pages/Trans/RptY (accessed on 12 July 2021). Taormina, R.; Chau, K.W. ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Eng. Appl. Artif. Intell. 2015, 45, 429–440. Taşdemir, K.; Wirnhardt, C. Neural network-based clustering for agriculture management. EURASIP J. Adv. Signal Process 2012, 1, 1-13. Taylor, R.W., Carandang, J.S., Alexander, C., Calleja, J.S. (2012). Making global cities sustainable: urban rooftop hydroponics for diversified agriculture in emerging economics. OIDA International Journal of Sustainable Development, 5,17–28. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; FAO. Earthscan: London, UK, 2011. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. Available online: https://www.unwater.org/publications/world-water-development-report-2018/ (accessed on 12, July, 2021). Tran, T.T.K.; Bateni, S.M.; Ki, S.J.; Vosoughifar, H. A Review of Neural Networks for Air Temperature Forecasting. Water 2021, 13(9), 1294. Trebing, K.; Mehrkanoon, S. Wind speed prediction using multidimensional convolutional neural networks. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Austtralia, December 2020, pp. 713-720. IEEE. Turner, B.L.; Menendez, H.M.; Gates, R.N.; Tedeschi, L.O.; Atzori, A.S. System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles. Resources 2016, 5, 40, doi:10.3390/resources5040040. Uen, T.S.; Chang, F.J.; Zhou, Y.; Tsai, W.P. Exploring Synergistic Benefits of Water-Food-Energy Nexus through Multi-Objective Reservoir Optimization Schemes. Sci. Total Environ. 2018, 633, 341–351. United Nations Environment Programme. (2014). Green Infrastructure Guide for Water Management—Ecosystem-based Management Approaches for Water-related Infrastructure Projects. Vergni, L.; Todisco, F. Spatio-temporal variability of precipitation, temperature and agricultural drought indices in Central Italy. Agric. For. Meteorol. 2011, 151(3), 301-313. Walters, J.P.; Archer, D.W.; Sassenrath, G.F.; Hendrickson, J.R.; Hanson, J.D.; Halloran, J.M.; Vadas, P.; Alarcon, V.J. Exploring Agricultural Production Systems and their Fundamental Components with System Dynamics Modelling. Ecol. Model. 2016, 333, 51–65, doi:10.1016/j.ecolmodel.2016.04.015. Wang, W.; Du, Y.; Chau, K.; Chen, H.; Liu, C.; Ma, Q. A Comparison of BPNN, GMDH, and ARIMA for Monthly Rainfall Forecasting Based on Wavelet Packet Decomposition. Water 2021, 13, 2871. Welbaum, G.E. Vegetable Production and Practices, 1st ed.; CABI: Boston, MA, USA, 2015. What is Taipei Garden City. Available online: https://farmcity.taipei/city_en/m1_about/about_C.php (accessed on 12 July 2021). Wica, M.; Witkowsk, M.; Szumiec, A.; Ziebura, T. Weather forecasting system with the use of neural network and backpropagation algorithm. In Proceedings of the International Conference on Data Engineering and Communication Technology, 2019; Vol. 2468, pp. 37-41. Wicaksono, A.; Jeong, G.; Kang, D. WEF Nexus Simulation—An Optimization Approach for Resource Security. Water 2019, 11, 667. World Maps of Köppen−Geiger Climate Classification. Available online: http://koeppen-geiger.vu-wien.ac.at (accessed on 12 July 2021). Worldwatch Institute. “State of the World 2011. Innovations that Nourish the Planet”. Worldwatch Institute: Washington, DC, USA, 2011. Wright, J.; Lytle, J.; Santillo, D.; Marcos, L.; Mai, K. Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance. Sustainability 2021, 13, 1972, doi:10.3390/su13041972. Wu, C.L.; Chau, K.W. Prediction of rainfall time series using modular soft computing methods. Eng. Appl. Artif. Intell. 2013, 26, 997–1007. Xiao, H.; Zhang, F.; Shen, Z.; Wu, K.; Zhang, J. Classification of weather phenomenon from images by using deep convolutional neural network. Earth and Space Sci. 2021, 8(5), e2020EA001604. Yao, M.H., Li, M.H., Juan, J.H., Hsia, Y.J., Lee, P.H., Shen, Y. (2017). Mapping reference evapotranspiration from meteorological satellite data and applications. Terrestrial, Atmospheric and Oceanic Sciences, 28(3), 501-515. Ya-Ting Chang, Li-Chiu Chang and Fi-John Chang,Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes. 19, 1431–1444 (2005) Zezza, A.; Tasciotti, L. Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food policy 2010, 35(4), 265-273. Zhai………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80115-
dc.description.abstract"水、糧食和能源是延續生命體和維繫都市運作的三種最重要資源,三者間的供應與使用息息相關。全球人口的快速增長、集中與都市化,大幅增加對水、糧食和能源需求,並對這些資源存量與使用效率形成巨大壓力。台灣雖然預計未來五十年人口將較目前下降,但都市化的趨勢依然明顯,可預期仍將對水、糧食和能源的供應有極大壓力。因此近來國際間針對水,糧食和能源鏈結關係(water-food-energy nexus)的研究越來越多,亦發展出各種分析工具方法來評估三種資源的供應、消耗量,以及彼此間的交互影響與競合關係,期能探索出資源分配利用的最佳化協同效益。然大部分研究的空間規模尺度都很大,例如從國家、河川流域、地理區域等角度來進行後驗的總量分析,而從地方上能事前先經過整體規劃再務實執行的機制,卻尚不多見,特別是從都市農業對水、糧食、能源資源在都會區的影響與貢獻的研究極其有限。2020年起全球新冠肺炎流行病暴發後,各種出行流動的管控措施影響了許多商品貨物及糧食的流通與供應,都市農園遂再度成為在地鮮蔬生產能否有效滿足局部自主供應的議題。 為落實在地資源鏈結之理念,本研究從水-糧食-能源鏈結的資源使用觀點着手,利用市中心的閒置土地空間,結合在地能源、資源收集與市政水電的併用來進行都市農業生產,並以系統動態模型(System Dynamics Modeling, SDM)方法,計算各資源的入出流量,再從水資源與能源的供給與消耗面,分析糧食就近生產所需的單位水電消耗量與收成量之間的關連性(關係)。而作物生長受在地氣候影響很大,故本研究先利用類神經網路方法下之自組織映射(Self-organizing Map,SOM),從北台灣歷史氣象資料中聚類找出北台灣的氣候類型,並特別分析臺北市氣候類型在時間分佈上的特徵,再結合台北市屋頂農園實際成功案例,建構台北市都市農園葉菜作物於氣候-水-糧食-能源資源鏈結之系統動態模型,並進一步以2018年氣象資料為模擬背景,發展全年依氣候條件配置葉菜種植(葉萵苣和地瓜葉)的系統動態基礎模式,探討台北市都市農園(屋頂農場)全季節葉菜作物種植生產在氣候與資源間的關聯性以及資源投入與產出間的利用效率,以提供都市與農業相關部門在規劃發展都市農業時,為未來潛在糧食安全風險提前部署都市地區農園儲備建置時提出策略參考。 本研究模型特色在於能隨時間的演進,透過描述資源的連續性、變化和交互行為特徵,有效捕捉水-糧食-能源鏈結間動態串聯。本研究以台北市大安老人中心屋頂農園實際成功的都市農園生產工作與收穫資料為案例基礎,所建構的氣候-水-能源-糧食鏈結模型評估了台北市屋頂農場葉菜作物生產的有效性和資源利用效率,其結果表明,2018年在120平方公尺的栽植面積裡,全年度在地連續種植葉萵苣和地瓜葉的總年產量可達1.001噸,而該年作物生長期間共需水量為1,170.5噸(包含使用596.8 噸的雨水回收再利用,和213.2 噸的自來水),以及總共645.1千瓦時的能源需求(包括298.4千瓦時太陽能光伏發電和45.8千瓦時的市政電力)。以種植的葉菜類單位面積計算,2018年平均每平方公尺需要9.8噸的澆灌水(5.0 ton/m2 來自雨水回收,以及1.8 ton/m2 的市水供應),以及每平方公尺需要 5.4 kwh的能源需求以啟動澆灌馬達工作(2.5 kwh/m2 來自太陽綠能的收集,以及 0.4 kwh/m2 的市電供應);再以此單位用量擴展到台北市的建築屋頂的面積,若其中30%的面積(56,602 m2)能施行屋頂農園種植葉萵苣和地瓜葉,其2018年屋頂農園的模擬收穫量得以推估出,除了當年綠水綠能的收集使用外,另僅需消耗4,460噸的市水和575,000kWh市電的能資源成本,供應周邊4,312人(或1,437個三口之家)的全年鮮蔬食用。 本研究分析結果將可提供相關決策單位對都會區鮮蔬葉菜類之糧食供應進行產地的有效調整配置與生產,增加城市居民新鮮農產蔬果的來源,並消除部分糧作因來自外地衍生的”食物里程”與運輸成本,以降低農產品市售價格,且能有效調節天災後的蔬菜供應質量與控制菜價波動,提升都市農業對水、糧食、能源資源的協同效益,期能更符合智慧永續城市的目標。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:26:56Z (GMT). No. of bitstreams: 1
U0001-1102202215053000.pdf: 7303380 bytes, checksum: a3f029d09dcebe323e119f61ac4295e6 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"Table of Contents 謝誌 i 中文摘要 ii Abstract iv Table of Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Overview 1 1.1.1 Trends of population and urbanization 1 1.1.2 Issues of Water, Food Energy Nexus 2 1.1.3 Urban Agriculture 4 1.1.4 Resource-use Sustainability 6 1.1.5 Weather Conditions 7 1.2 Research Formation 8 1.2.1 Problems and Scope 8 1.2.2 Rationale Concepts 10 1.2.3 Research Objectives 11 1.3 Research Flow 12 Chapter 2 Framework and Methodology 14 2.1 From Concepts to Framework 14 2.1.1 Explore Analytical Resource Flows 14 2.1.2 The Real Case as Reference 17 2.2 Materials 19 2.2.1 The Study Area Site 19 2.2.2 The Target Crops 20 2.2.3 The Historical Meteorology Data 21 2.3 Methodology 22 2.3.1 Artificial Neural Network (ANN) 22 2.3.2 Self-Organizing Map (SOM) 23 2.3.3 System Dynamics Modeling (SDM) 23 2.3.4 Integration for UA Evaluation 25 Chapter 3 Literature Review 26 3.1 WFE Nexus 26 3.2 Urban Agriculture 28 3.3 Agriculture Weather Forecasting 31 Chapter 4 Using a SOM to Explore Weather Types and Features 34 4.1 Materials and Methodology 36 4.1.1 Weather Data Collection 37 4.1.2 SOM Approach 39 4.2 SOM Results Analysis 42 4.2.1 Weather Features Types 43 4.2.2 Weather patterns at Five Stations in Northern Taiwan 49 4.2.3. Temporal Pattern of Weather Types 49 4.2.4 Frequency, Duration Distributions of Type Occurrences 52 4.3 Main Weather Features in Taipei City 54 Chapter 5 System Dynamic Modeling for Rooftop Farming 58 5.1 SDM Methodology 58 5.1.1 System dynamics (SD) 59 5.1.2 Construction of the SD Model 59 5.1.3 SD operation Driven by the WEF Nexus 67 5.2 Results of SPL SDM 69 5.2.1 SPL’s CSI, Growth Periods Yields 69 5.2.2 Water, Energy Needs Consumption on a Harvest Basis 71 5.3 Analysis on SPL SDM 75 5.4 SDM Results Analysis on Leafy Lettuce 77 Chapter 6 The All-Year Leafy Vegetables Planting Plan 83 6.1 Weather Features for Leafy Vegetable Planting in Taipei 83 6.2 All-year Planting Plan for Target Crops 85 6.3 The Setting Scheduling for SDM 86 6.4 Results of the All-year Planting SDM on Resource Uses 89 Chapter 7 Discussion and Applications 93 7.1 Weather Types Features 93 7.1.1 SOM Approach Contributions to the Weather Typing 93 7.1.2 Potential Applications with Examples 94 7.2 Resource Use Efficiency on WFE Nexus 97 7.2.1 SDM Contributions to the Resources Continuum in WFE Nexus 97 7.2.2 Potential Applications for Urban Agriculture from WFE Nexus 98 7.3 Prospects for All-year rooftop farming under the WEF Nexus 99 Chapter 8 Conclusions 101 8.1 Weather Features and Applications 101 8.2 Resource-use efficiency Applications on WFE nexus 102 8.3 Suggestions and Future Work 103 Reference List 105   List of Figures Figure 1.1. The interrelationship of water, food, and energy nexus 3 Figure 1.2. Pressures from urbanization and population to the WFE Nexus 4 Figure 1.3. Direction of resource flows among WFE Nexus. 10 Figure 1.4. Research formation flow in this study 13 Figure 2.1. Concept of WFE resource stock and flows 14 Figure 2.2. Conceptual architecture hierarchy of urban WFE Nexus 16 Figure 2.3. Concept of WFE resources as inflows and outflows 16 Figure 2.4. Resource sources to meet demand goal 18 Figure 2.5. Urban rooftop farming mechanism and benefits 18 Figure 2.6. The rooftop farm at the Da-an Senior Service Center. 20 Figure 2.7. Conceptual illustration for basic ANN structure 23 Figure 2.8. Approaches integrated for urban agriculture evaluation 25 Figure 4.1. The locations of five Central Weather Bureau stations in northern Taiwan 38 Figure 4.2. The SOM network for weather features clustering in this research 42 Figure 4.3. The counts of datasets and numbering labels in the SOM topology 43 Figure 4.4. The heatmap of weather factors and their corresponding characteristics 45 Figure 4.5 Weather types #7 and #2 with weather factor significance transformed into radar diagrams 47 Figure 4.6. The weather type distribution on a 10-day basis at Taipei Station 51 Figure 4.7. The annual percentages of nine weather type occurrences at Taipei Station 51 Figure 4.8. The seasonal weather features and the leading types at Taipei Station 52 Figure 4.9. The distribution of main weather types in sections A, B C at Taipei Station from 2014 to 2018 54 Figure 4.10. The major weather types of Sections A, B C in radar diagrams 55 Figure 5.1. The WEF Nexus upon a rooftop farming operation mechanism 59 Figure 5.2. Construction of the Climate Suitability Index (CSI) and four preliminary components 61 Figure 5.3. SD model structure engaging climate, water, energy and food sectors 62 Figure 5.4. The flowchart of urban rooftop farming SD under the WEF Nexus 68 Figure 5.5. Climatic suitability indices and SPL growing results from the SDM 70 Figure 5.6. Climate conditions vs. resource needs and consumption on per harvest basis from the SD model 73 Figure 5.7. Water and energy use obtained from the SD model 74 Figure 5.8. The suitability indices for leafy lettuce in 2014-2016 78 Figure 5.9. Simulated growing periods of leafy lettuce between 2014-2016 79 Figure 5.10. Analysis of the accumulated water and energy resource use for each lettuce harvest 81 Figure 5.11. Water energy resource uses for each lettuce harvest on per unit basis 82 Figure 6.1. The major weather types of 3 weather Sections in Taipei and their statistical characteristics of weather factors 84 Figure 6.2. The percentage of green and city resource uses of each harvest for the all-year leafy vegetable cultivation in Taipei 90   List of Tables Table 3.1. Benefits of Vegetables Yields 30 Table 3.2. Benefits of Food Safety 30 Table 3.3. Benefits of Environment 30 Table 4.1. Basic weather information collected at five weather stations in northern Taiwan during 2014–2018 39 Table 4.2. Weather types and features at 5 weather stations in northern Taiwan 49 Table 4.3. The summarized weather types and features of Sections A, B and C in Taipei 57 Table 5.1. Roles of climate, water, energy and food resources in the SDM 63 Table 5.2. Ratio of SPL resource consumption to annual resource needs obtained from the SDM 76 Table 5.3. SPL yields and resources use simulated by the SDM 76 Table 5.4. Annual yields and resource use for leafy lettuce on per unit basis 80 Table 6.1. The SDM simulation result of all-year leafy vegetable cultivation for rooftop farming in 2018 88 Table 6.2. Resource uses on per unit basis of each harvest for year-round leafy vegetables cultivation 92 "
dc.language.isoen
dc.subject北台灣氣候類型與特徵zh_TW
dc.subject水-糧食-能源鏈結zh_TW
dc.subject都市農業zh_TW
dc.subject資源使用效益zh_TW
dc.subject系統動態模型zh_TW
dc.subject自組織映射網路zh_TW
dc.subject氣候適宜度指數zh_TW
dc.subjectsystem dynamics modeling (SDM)en
dc.subjectweather types and features in northern Taiwanen
dc.subjectclimate suitability indexen
dc.subjectWater-Energy-Food nexus (WEF Nexus)en
dc.subjecturban agriculture (UA)en
dc.subjectsustainable resources-use efficiencyen
dc.subjectself-organizing map (SOM)en
dc.title都市農業在永續智慧城市水-糧食-能源鏈結下的協同效用zh_TW
dc.titleSYNERGIES OF URBAN AGRICULTURE TO SUPPORT SUSTAINABLE WATER-FOOD-ENERGY NEXUS IN SMART CITIESen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee盧虎生(Tzong-Lin Jay Shieh),童慶斌(Hsuen-Li Chen),張麗秋(Feng-Yu Tsai),鄭舒婷(Yu-Ching Huang)
dc.subject.keyword水-糧食-能源鏈結,都市農業,資源使用效益,系統動態模型,自組織映射網路,氣候適宜度指數,北台灣氣候類型與特徵,zh_TW
dc.subject.keywordWater-Energy-Food nexus (WEF Nexus),urban agriculture (UA),sustainable resources-use efficiency,system dynamics modeling (SDM),self-organizing map (SOM),climate suitability index,weather types and features in northern Taiwan,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202200566
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1102202215053000.pdf7.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved