Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80113Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林逸彬(Yi-Pin Lin) | |
| dc.contributor.author | Jheng-Shin Chang | en |
| dc.contributor.author | 張正欣 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:26:49Z | - |
| dc.date.available | 2021-07-23 | |
| dc.date.available | 2022-11-23T09:26:49Z | - |
| dc.date.copyright | 2021-07-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-08 | |
| dc.identifier.citation | Ali Hasanbeigi, H.L., Christopher Williams, Lynn Price, 2012. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry., https://www.osti.gov/servlets/purl/1213537. Allen, A.J., Thomas, J.J., Jennings, H.M., 2007. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater. 6, 311-316. Alp, İ., Deveci, H., Süngün, H., 2008. Utilization of flotation wastes of copper slag as raw material in cement production. J. Hazard. Mater. 159, 390-395. Aranda-Usón, A., López-Sabirón, A., Ferreira Ferreira, G., Llera-Sastresa, E., 2013. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renew. Sustain. Energy Rev. 23, 242–260. ASTM, 2011. Designation: C204-11 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus, https://www.astm.org/DATABASE.CART/HISTORICAL/C204-11.htm. ASTM, 2017. Designation: C403/403M-16 Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance, https://www.astm.org/Standards/C403. ASTM, 2018a. Designation: C109/C109M-20b Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), https://www.astm.org/Standards/C109. ASTM, 2018b. Designation: C114-18 Standard Test Methods for Chemical Analysis of Hydraulic Cement, https://www.astm.org/Standards/C114. ASTM, 2018c. Designation: C151/C151M-18 Standard Test Method for Autoclave Expansion of Hydraulic Cement, https://www.astm.org/Standards/C151. ASTM, 2018d. Designation: Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis, https://www.astm.org/Standards/C1365.htm. ASTM, 2020. Designation: C150/150M-20 Standard Specification for Portland Cement, https://www.astm.org/Standards/C150. Bogue, R.H., 1929. Calculation of the compounds in Portland cement. Ind. Eng. Chem. Anal. Ed. 1, 192-197. Chen, H., Ma, X., Dai, H., 2010. Reuse of water purification sludge as raw material in cement production. Cement Concrete Comp. 32, 436-439. Chen, Y.-L., Chang, J.-E., Lai, Y.-C., Ko, M.-S., 2012. Effects of sintering atmosphere on cement clinkers produced from chromium-bearing sludge. J. Air Waste Manage. 62, 587-593. Chen, Y.-L., Shih, P.-H., Chiang, L.-C., Chang, Y.-K., Lu, H.-C., Chang, J.-E., 2009. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. J. Hazard. Mater. 170, 443-448. Choy, K.K.H., Ko, D.C.K., Cheung, W.H., Fung, J.S.C., Hui, D.C.W., Porter, J.F., McKay, G., 2004. Municipal solid waste utilization for integrated cement processing with waste minimization: A pilot scale proposal. Process Saf. Environ. 82, 200-207. Chrysochoou, M., Dermatas, D., 2006. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. J. Hazard. Mater. 136, 20-33. Clavier, K.A., Watts, B., Liu, Y., Ferraro, C.C., Townsend, T.G., 2019. Risk and performance assessment of cement made using municipal solid waste incinerator bottom ash as a cement kiln feed. Resour. Conserv. Recy. 146, 270-279. Concrete NZ, 2020. Concrete Industry on Track to Meet Emissions Reduction Target, https://concretenz.org.nz/news/493075/. Durães, N., Novo, L.A.B., Candeias, C., da Silva, E.F., 2018. Chapter 2 - Distribution, Transport and Fate of Pollutants. in: Duarte, A.C., Cachada, A., Rocha-Santos, T. (Eds.). Soil Pollution. Academic Press, 29-57. ECOFYS, 2019. Co-processing of waste in EU cement plants: status and prospects, https://circulareconomy.europa.eu/platform/en/good-practices/co-processing-waste-eu-cement-plants-status-and-prospects. Fernández Olmo, I., Chacon, E., Irabien, A., 2001. Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cement Concrete Res. 31, 1213-1219. Gougar, M.L.D., Scheetz, B.E., Roy, D.M., 1996. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste Manage. 16, 295-303. Guo, B., Liu, B., Yang, J., Zhang, S., 2017. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manage. 193, 410-422. Halim, C.E., Amal, R., Beydoun, D., Scott, J.A., Low, G., 2003. Evaluating the applicability of a modified toxicity characteristic leaching procedure (TCLP) for the classification of cementitious wastes containing lead and cadmium. J. Hazard. Mater. 103, 125-140. Halim, C.E., Amal, R., Beydoun, D., Scott, J.A., Low, G., 2004a. Implications of the structure of cementitious wastes containing Pb(II), Cd(II), As(V), and Cr(VI) on the leaching of metals. Cement Concrete Res. 34, 1093-1102. Halim, C.E., Scott, J.A., Natawardaya, H., Amal, R., Beydoun, D., Low, G., 2004b. Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes. Environ. Sci. Technol. 38, 3977-3983. Hamilton, I.W., Sammes, N.M., 1999. Encapsulation of steel foundry bag house dusts in cement mortar. Cement Concrete Res. 29, 55-61. Hong, S.-Y., Glasser, F.P., 2002. Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina. Cement Concrete Res. 32, 1101-1111. Japan Cement Association, 2020. Transition of amount of used wastes and by-products in Japan., https://www.jcassoc.or.jp/cement/2eng/e_01d.html. Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, B.-M., 2010. Removal of hazardous metals from MSW fly ash—An evaluation of ash leaching methods. J. Hazard. Mater. 173, 310-317. Krammart, P., Tangtermsirikul, S., 2004. Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste. Constr. Build Mater. 18, 579-583. LafargeHolcim, 2021. Sustainability report, https://www.lafargeholcim.com/sustainability-reports. Lam, C.H.K., Barford, J.P., McKay, G., 2011. Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean Technol. Envir. 13, 607-615. Lamas, W.d.Q., Palau, J.C.F., Camargo, J.R.d., 2013. Waste materials co-processing in cement industry: Ecological efficiency of waste reuse. Renew. Sustain. Energy Rev. 19, 200-207. Levy, S.M., 2012. Section 5 - Calculations Relating to Concrete and Masonry. in: Levy, S.M. (Ed.). Construction Calculations Manual. Butterworth-Heinemann, Boston, 211-264. Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z., Huang, L., 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 468-469, 843-853. Liao, C., Tang, Y., Liu, C., Shih, K., Li, F., 2016. Double-barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability. J. Hazard. Mater. 311, 246-253. Liu, L., Li, W., Song, W., Guo, M., 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633, 206-219. Lu, C.-C., Hsu, M.H., Lin, Y.-P., 2019. Evaluation of heavy metal leachability of incinerating recycled aggregate and solidification/stabilization products for construction reuse using TCLP, multi-final pH and EDTA-mediated TCLP leaching tests. J. Hazard. Mater. 368, 336-344. Lu, X., Shih, K., 2015. Formation of lead-aluminate ceramics: Reaction mechanisms in immobilizing the simulated lead sludge. Chemosphere 138, 156-163. Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M., 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199-216. Pan, J.R., Huang, C., Kuo, J.-J., Lin, S.-H., 2008. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manage. 28, 1113-1118. Shen, D., Huang, M., Feng, H., Li, N., Zhou, Y., Long, Y., 2017. Effect of waste addition points on the chromium leachability of cement produced by co-processing of tannery sludge. Waste Manage. 61, 345-353. Shetty, M.S., 2008. Concrete Technology: Theory and Practice, 4 ed. S. Chand and Co. Shi, H.-S., Kan, L.-L., 2009. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. J. Hazard. Mater. 164, 750-754. Shih, P.-H., Chang, J.-E., Chiang, L.-C., 2003. Replacement of raw mix in cement production by municipal solid waste incineration ash. Cement Concrete Res. 33, 1831-1836. Stephan, D., Mallmann, R., Knöfel, D., Härdtl, R., 1999. High intakes of Cr, Ni, and Zn in clinker: Part I. Influence on burning process and formation of phases. Cement Concrete Res. 29, 1949-1957. Su, M., Liao, C., Chuang, K.-H., Wey, M.-Y., Shih, K., 2015. Cadmium stabilization efficiency and leachability by CdAl4O7 monoclinic structure. Environ. Sci. Technol. 49, 14452-14459. Swenson, E.G., Thorvaldson, T., 1951. The alcohol-glycerol method for the determination of free lime. Can. J. Chemistry 29, 140-153. Tabatabai, M., Sparks, D.L., Roberts, D., Nachtegaal, M., Sparks, D., 2005. Chapter 13-Speciation of Metals in Soils. in: Tabatabai, M.A., Sparks, D.L. (Eds.). Chemical Processes in Soils, 619-654. Taiwan EPA, 2011. Soil Pollution Control Standards. Taiwan EPA, 2019. Recycled Aggregates Leaching Procedure (NIEA R222.10C), https://www.epa.gov.tw/DisplayFile.aspx?FileID=E81076E0B4462286. Taiwan EPA, 2021a. Soil and Groundwater Pollution Remediation. Taiwan EPA, 2021b. Soil and Groundwater Pollution Remediation Fund Management Board, https://sgw.epa.gov.tw/public/. Taiwan Industry Technology Research Institute, 2016. 污染土壤離場再製產品管理技術研析計畫, https://www.itri.org.tw/. Taiwan Ministry of Economic Affairs, 2017. 能源密集產業低碳綠色製程典範案例彙編-水泥業. Tang, Y., Shih, K., 2015. Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases. Environ. Technol. 36, 2977-2986. Taylor, H.F.W., 1997. Cement chemistry, 2 ed. Thomas Telford. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. Exp. Suppl. 101, 133-164. Titan Cement, 2021. Integrated annual report-Building our future together., https://www.titan-cement.com/. US EPA, 1992. Method 1311:Toxicity Characteristic Leaching Procedure., https://www.epa.gov/sites/production/files/2015-12/documents/1311.pdf. US EPA, 1994. Method 1312: Synthetic Precipitation Leaching Procedure., https://www.epa.gov/sites/production/files/2015-12/documents/1312.pdf. US EPA, 2012. Method 1313: Liquid-Solid Partitioning As a Function of Extract pH Using a Parallel Batch Extraction Procedure., https://www.epa.gov/sites/production/files/2015-12/documents/1313.pdf. Wu, K., Shi, H., Guo, X., 2011. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. Waste Manage. 31, 2001-2008. Wu, Q., Wu, Y., Tong, W., Ma, H., 2018. Utilization of nickel slag as raw material in the production of Portland cement for road construction. Constr. Build Mater. 193, 426-434. Yan, D., Peng, Z., Yu, L., Sun, Y., Yong, R., Helge Karstensen, K., 2018. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. Waste Manage. 76, 106-116. Yang, Y., Huang, Q., Tang, Z., Wang, Q., Zhu, X., Liu, W., 2012. Deca-brominated diphenyl ether destruction and PBDD/F and PCDD/F emissions from coprocessing deca-BDE mixture-contaminated soils in cement kilns. Environ. Sci. Technol. 46, 13409-13416. Yang, Y., Xue, J., Huang, Q., 2014. Studies on the solidification mechanisms of Ni and Cd in cement clinker during cement kiln co-processing of hazardous wastes. Constr. Build Mater. 57, 138-143. Yang, Y., Yang, Y., Wang, Q., Huang, Q., 2010. Release of heavy metals from concrete made with cement from cement kiln co-processing of hazardous wastes in pavement scenarios. Environ. Eng. Sci. 28, 35-42. Zhang, J., Liu, J., Li, C., Jin, Y., Nie, Y., Li, J., 2009. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization. J. Hazard. Mater. 165, 1179-1185. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80113 | - |
| dc.description.abstract | 水泥窯協同處理(co-processing)利用廢棄物替代部分的製程燃料或水泥原料,可降低生產成本減少環境負荷並處理有害廢棄物。本研究添加兩種重金屬(場址1及場址2)污染土壤,取代原料配比,以0、3、7.6和10 wt.% 製作水泥,分析其工程特性,並利用事業廢棄物毒性特性溶出程序(TCLP)、合成降水溶出程序(SPLP)、EDTA輔助TCLP (EDTA-mediated TCLP)溶出程序以及再生粒料溶出程序(RALP)檢測重金屬趨勢。 經由成分分析,污染土壤可替代水泥原料中之黏土。特性分析結果顯示當添加土壤量愈多,礦物相Ca3SiO5 (C3S)之比例有下降的趨勢,Ca2SiO4 (C2S)反之上升,使凝結時間延長且抗壓強度降低,尤其以添加高濃度之鉻污染土壤更為顯著。TCLP試驗中,添加量超過7.6%場址1的水泥粉之鉻溶出濃度超出事業廢棄物溶出標準,而添加量10%的硬固水泥之鉻溶出濃度仍符合溶出標準,添加10%場址2的水泥粉及硬固水泥之鉻溶出量皆符合標準。此外,EDTA輔助TCLP相較於TCLP有更高的鉻溶出量。RALP試驗結果顯示所有水泥皆可做為控制性低強度回填材料(CLSMs)。在本研究之添加比例下,以3 wt.% 場址1及10 wt.% 場址2污染土壤添加製作之水泥,可符合工程特性要求並兼具環境相容性。由經濟分析可知,水泥業者及污染行為人可藉由水泥窯協同處理獲得可觀的經濟效益。重金屬污染之土壤適合以水泥窯協同處理之方式進行循環利用,同時兼顧污染處理並降低傳統水泥生產之環境及經濟成本。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:26:49Z (GMT). No. of bitstreams: 1 U0001-0607202120513200.pdf: 3313994 bytes, checksum: 7a13c5fe0900f032d184bfea01d61623 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I Abstract II Contents IV Content of Figures VI Content of Tables VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Objectives 2 Chapter 2 Literature Review 3 2.1 Heavy metal-contaminated soil 3 2.2 Co-processing of cement industry 5 2.3 Mechanism of metal immobilization by co-processing 9 2.4 Assessment of environmental compatibility 12 Chapter 3 Materials and Methods 15 3.1 Experimental design 15 3.2 Materials and chemicals 17 3.3 Microwave assisted aqua regia digestion 19 3.4 Cement manufacture 19 3.5 Performance evaluation 22 3.6 Leaching test 25 3.7 Analytical method 27 Chapter 4 Results and discussion 29 4.1 Characterization of heavy metal-contaminated soils 29 4.2 Characterization of raw materials and cement products 34 4.3 Leaching test 43 4.4 Economic analysis 49 Chapter 5 Conclusions and recommendations 51 5.1 Conclusions 51 5.2 Recommendations 52 Reference List 53 Appendix 63 | |
| dc.language.iso | en | |
| dc.subject | 經濟分析 | zh_TW |
| dc.subject | 重金屬污染土壤 | zh_TW |
| dc.subject | 水泥窯協同處理 | zh_TW |
| dc.subject | 環境相容性 | zh_TW |
| dc.subject | cement kiln | en |
| dc.subject | heavy metal-contaminated soil | en |
| dc.subject | environmental compatibility | en |
| dc.subject | co-processing | en |
| dc.title | 以水泥窯協同處理再生重金屬污染土壤生產水泥之研究 | zh_TW |
| dc.title | Reutilization of Heavy Metal Contaminated Soils for Cement Production by Cement Kiln Co-processing | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林正芳(Hsin-Tsai Liu),席行正(Chih-Yang Tseng),廖文正 | |
| dc.subject.keyword | 重金屬污染土壤,水泥窯協同處理,環境相容性,經濟分析, | zh_TW |
| dc.subject.keyword | heavy metal-contaminated soil,cement kiln,co-processing,environmental compatibility, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202101310 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| Appears in Collections: | 環境工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0607202120513200.pdf | 3.24 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
