Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80096
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇偉儁(Wei-Jiun Su)
dc.contributor.authorZih-Yang Yenen
dc.contributor.author顏子洋zh_TW
dc.date.accessioned2022-11-23T09:25:53Z-
dc.date.available2021-08-20
dc.date.available2022-11-23T09:25:53Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-11
dc.identifier.citation[1] S. P. Beeby, M. J. Tudor, and N. M. White, 'Energy harvesting vibration sources for microsystems applications,' Measurement Science and Technology, vol. 17, no. 12, pp. R175-R195, 2006, doi: 10.1088/0957-0233/17/12/r01. [2] S. R. Anton and H. A. Sodano, 'A review of power harvesting using piezoelectric materials (2003–2006),' Smart Materials and Structures, vol. 16, no. 3, pp. R1-R21, 2007, doi: 10.1088/0964-1726/16/3/r01. [3] C. Dagdeviren et al., 'Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm,' Proc Natl Acad Sci U S A, vol. 111, no. 5, pp. 1927-32, Feb 4 2014, doi: 10.1073/pnas.1317233111. [4] A. Erturk and D. J. Inman, 'A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters,' Journal of Vibration and Acoustics, vol. 130, no. 4, 2008, doi: 10.1115/1.2890402. [5] A. Erturk and D. J. Inman, 'An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations,' Smart Materials and Structures, vol. 18, no. 2, 2009, doi: 10.1088/0964-1726/18/2/025009. [6] F. Goldschmidtboeing and P. Woias, 'Characterization of different beam shapes for piezoelectric energy harvesting,' Journal of Micromechanics and Microengineering, vol. 18, no. 10, 2008, doi: 10.1088/0960-1317/18/10/104013. [7] A. E. Kubba and K. Jiang, 'Efficiency enhancement of a cantilever-based vibration energy harvester,' Sensors (Basel), vol. 14, no. 1, pp. 188-211, Dec 23 2013, doi: 10.3390/s140100188. [8] C. Eichhorn, F. Goldschmidtboeing, and P. Woias, 'Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam,' Journal of Micromechanics and Microengineering, vol. 19, no. 9, 2009, doi: 10.1088/0960-1317/19/9/094006. [9] Y. Hu, H. Xue, and H. Hu, 'A piezoelectric power harvester with adjustable frequency through axial preloads,' Smart Materials and Structures, vol. 16, no. 5, pp. 1961-1966, 2007, doi: 10.1088/0964-1726/16/5/054. [10] W. W. Clark et al., 'Tunable resonant frequency power harvesting devices,' presented at the Smart Structures and Materials 2006: Damping and Isolation, 2006. [11] A. Erturk, J. M. Renno, and D. J. Inman, 'Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs,' Journal of Intelligent Material Systems and Structures, vol. 20, no. 5, pp. 529-544, 2008, doi: 10.1177/1045389x08098096. [12] R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, 'Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester,' Sensors and Actuators A: Physical, vol. 230, pp. 1-8, 2015, doi: 10.1016/j.sna.2015.03.038. [13] S. Liu, Q. Cheng, D. Zhao, and L. Feng, 'Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper,' Sensors and Actuators A: Physical, vol. 245, pp. 97-105, 2016, doi: 10.1016/j.sna.2016.04.060. [14] H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, 'Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper,' Sensors and Actuators A: Physical, vol. 186, pp. 242-248, 2012, doi: 10.1016/j.sna.2012.01.033. [15] J.-T. Lin, B. Lee, and B. Alphenaar, 'The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency,' Smart Materials and Structures, vol. 19, no. 4, 2010, doi: 10.1088/0964-1726/19/4/045012. [16] L. Tang and Y. Yang, 'A nonlinear piezoelectric energy harvester with magnetic oscillator,' Applied Physics Letters, vol. 101, no. 9, 2012, doi: 10.1063/1.4748794. [17] L. Zhao, L. Tang, and Y. Yang, 'Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester,' Smart Materials and Structures, vol. 22, no. 12, 2013, doi: 10.1088/0964-1726/22/12/125003. [18] A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, 'Power harvesting from transverse galloping of square cylinder,' Nonlinear Dynamics, vol. 70, no. 2, pp. 1355-1363, 2012, doi: 10.1007/s11071-012-0538-4. [19] T. Tan, X. Hu, Z. Yan, and W. Zhang, 'Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor,' Energy, vol. 187, 2019, doi: 10.1016/j.energy.2019.115915. [20] J. Sirohi and R. Mahadik, 'Piezoelectric wind energy harvester for low-power sensors,' Journal of Intelligent Material Systems and Structures, vol. 22, no. 18, pp. 2215-2228, 2011, doi: 10.1177/1045389x11428366. [21] S. Orrego et al., 'Harvesting ambient wind energy with an inverted piezoelectric flag,' Applied Energy, vol. 194, pp. 212-222, 2017, doi: 10.1016/j.apenergy.2017.03.016. [22] M. Ahmadian, M. Bryant, M. N. Ghasemi-Nejhad, and E. Garcia, 'Development of an aeroelastic vibration power harvester,' presented at the Active and Passive Smart Structures and Integrated Systems 2009, 2009. [23] Z. Zhou, W. Qin, P. Zhu, W. Du, W. Deng, and J. Pan, 'Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing,' Applied Physics Letters, vol. 114, no. 24, 2019, doi: 10.1063/1.5100598. [24] M. Bryant, E. Wolff, and E. Garcia, 'Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters,' Smart Materials and Structures, vol. 20, no. 12, 2011, doi: 10.1088/0964-1726/20/12/125017. [25] M. N. Ghasemi-Nejhad, V. Sivadas, and A. M. Wickenheiser, 'A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting,' presented at the Active and Passive Smart Structures and Integrated Systems 2011, 2011. [26] H. L. Dai, A. Abdelkefi, and L. Wang, 'Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations,' Nonlinear Dynamics, vol. 77, no. 3, pp. 967-981, 2014, doi: 10.1007/s11071-014-1355-8. [27] J. Jia, X. Shan, D. Upadrashta, T. Xie, Y. Yang, and R. Song, 'Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration,' Micromachines (Basel), vol. 9, no. 12, Dec 17 2018, doi: 10.3390/mi9120667. [28] S. Zhou and J. Wang, 'Dual serial vortex-induced energy harvesting system for enhanced energy harvesting,' AIP Advances, vol. 8, no. 7, 2018, doi: 10.1063/1.5038884. [29] L. B. Zhang, H. L. Dai, A. Abdelkefi, and L. Wang, 'Improving the performance of aeroelastic energy harvesters by an interference cylinder,' Applied Physics Letters, vol. 111, no. 7, 2017, doi: 10.1063/1.4999765. [30] J. Wang, S. Zhou, Z. Zhang, and D. Yurchenko, 'High-performance piezoelectric wind energy harvester with Y-shaped attachments,' Energy Conversion and Management, vol. 181, pp. 645-652, 2019, doi: 10.1016/j.enconman.2018.12.034. [31] R. Naseer, H. Dai, A. Abdelkefi, and L. Wang, 'Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics,' Energies, vol. 13, no. 1, 2019, doi: 10.3390/en13010071. [32] L. B. Zhang, A. Abdelkefi, H. L. Dai, R. Naseer, and L. Wang, 'Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations,' Journal of Sound and Vibration, vol. 408, pp. 210-219, 2017, doi: 10.1016/j.jsv.2017.07.029. [33] M. R. Hajj, A. Mehmood, and I. Akhtar, 'Single-degree-of-freedom model of displacement in vortex-induced vibrations,' Nonlinear Dynamics, vol. 103, no. 2, pp. 1305-1320, 2021, doi: 10.1007/s11071-021-06209-5. [34] Y. Yang, H. Wu, and C. K. Soh, 'Experiment and modeling of a two-dimensional piezoelectric energy harvester,' Smart Materials and Structures, vol. 24, no. 12, 2015, doi: 10.1088/0964-1726/24/12/125011. [35] W. J. Su and W. Y. Lin, 'Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester,' International Journal of Mechanical Sciences, vol. 173, 2020, doi: 10.1016/j.ijmecsci.2020.105457. [36] 王宗祥, '結合非線性磁力的雙方向渦流誘發振動能量採集器之設計及分析,' 臺灣大學機械工程學研究所碩士學位論文, pp. 1-99, 2019. [37] R. D. Blevins, Flow-induced vibration / Robert D. Blevins, 2nd ed. ed. New York, N.Y: Van Nostrand Reinhold, 1990. [38] E. Guilmineau and P. Queutey, 'Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow,' Journal of Fluids and Structures, vol. 19, no. 4, pp. 449-466, 2004, doi: 10.1016/j.jfluidstructs.2004.02.004. [39] J. S. Leontini, M. C. Thompson, and K. Hourigan, 'The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow,' Journal of Fluids and Structures, vol. 22, no. 6-7, pp. 857-864, 2006, doi: 10.1016/j.jfluidstructs.2006.04.003. [40] X. f. Gao, W. d. Xie, W. h. Xu, Y. c. Bai, and H. t. Zhu, 'A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number,' China Ocean Engineering, vol. 32, no. 2, pp. 132-143, 2018, doi: 10.1007/s13344-018-0015-z. [41] C. Norberg, 'Fluctuating lift on a circular cylinder: review and new measurements,' Journal of Fluids and Structures, vol. 17, no. 1, pp. 57-96, 2003, doi: 10.1016/s0889-9746(02)00099-3. [42] SMART-MATERIAL, 'MFC P2 and P3 types (d31 effect),' 2021. [Online]. Available: https://www.smart-material.com/MFC-product-P2V2.html. [43] A. Erturk, O. Bilgen, M. Fontenille, and D. J. Inman, 'Piezoelectric energy harvesting from macro-fiber composites with an application to morphing-wing aircrafts,' in Proceedings of the 19th International Conference on Adaptive Structures and Technologies, 2008: Citeseer, pp. 6-9. [44] P. M. Gerhart, A. L. Gerhart, and J. I. Hochstein, Fundamentals of fluid mechanics. Wiley, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80096-
dc.description.abstract傳統的壓電能量採集器為懸臂梁結構,由於其頻寬過窄且振動方向性單一,在應用上受到諸多限制。因此本研究提出一具有雙方向振動自由度的框形梁壓電能量採集裝置以改善以上限制。藉由改變其激振角度,使其在同一個激振環境下產生兩模態耦合的現象,從而拓增頻寬的大小。另外,利用風力作為激振外力源,藉由框形樑上的圓柱形受風結構來產生渦流,並受益於其特殊的鎖定現象,探討其對於框形樑在雙模態耦合與單一模態時的表現差異。本研究使用Euler-Bernoulli梁理論與壓電本構方程式作為基礎,推導出框形梁的力電耦合振動方程式,並藉由基底激振實驗擬合出系統之阻尼比與壓電片之壓電常數。透過瑞利振盪器數學模型模擬出渦流對採集器產生的動態響應,推導出完整的力電耦合聯立方程式。藉由改變輔梁長度與激振角度,來觀察其對採集器的輸出電壓與採集能力的影響。結果顯示,在渦流誘發激振環境下,當角度從0° 開始變大時,兩模態逐漸發生耦合的現象,使其有效共振風速區間的範圍對比只有單一模態時明顯提升,尤以輔梁長度40 mm時更為明顯。在激振角度同為45° 的情況下,輔樑長度40 mm較輔梁長度30 mm時的有效共振風速區間增加大約25 %。在輔樑長度40 mm下,激振角度45° 對比角度0° 時,採集範圍提升了53.8%;對比角度90° 時,則提升了33.3%。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:25:53Z (GMT). No. of bitstreams: 1
U0001-0907202100193900.pdf: 8040199 bytes, checksum: f2f04a116da1a6d3316d574d2cfcee51 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 符號表 xiii Chapter 1 序論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與方法 10 1.4 論文架構 11 Chapter 2 壓電能量採集理論 12 2.1 壓電效應 12 2.2 壓電本構方程式 14 Chapter 3 框形梁振動之雙模態耦合採集器模型 17 3.1 採集器之數學模型 18 3.1.1 振動數學模型 18 3.1.2 模態分析 24 3.1.3 正交條件 28 3.1.4 運動方程式 29 3.2 採集器之電路模型 30 3.3 介面電路 33 Chapter 4 渦流誘發振動模型 35 4.1 空氣力學模型相關參數 35 4.1.1 雷諾數(Reynolds number) 35 4.1.2 司特勞克數(Strouhal number) 36 4.1.3 渦流剝離頻率(Vortex shedding frequency) 37 4.2 渦流誘發振動 38 4.3 渦流升力模型 42 4.4 結合渦流誘發振動之多角度採集器模型 44 4.4.1 不同之激振外力源 44 4.4.2 雙模態耦合 46 Chapter 5 實驗環境 48 5.1 實驗設計 48 5.2 實驗設備 53 5.3 實驗流程 58 Chapter 6 結果驗證與討論 60 6.1 壓電材料之簡化參數 60 6.2 線性框形梁驗證 63 6.2.1 基底激振之驗證 65 6.2.2 雙模態耦合之驗證 70 6.3 渦流誘發振動模型驗證 76 6.3.1 渦流誘發振動之驗證 77 6.3.2 雙模態耦合之模擬 82 Chapter 7 結論與未來展望 93 7.1 結論 93 7.2 未來展望 94 參考文獻 95 附錄A 框形梁數學模型之邊界條件與連續條件 99
dc.language.isozh-TW
dc.subject雙模態耦合zh_TW
dc.subject壓電能量採集器zh_TW
dc.subject雙方向zh_TW
dc.subject渦流誘發激振zh_TW
dc.subject可變激振角度zh_TW
dc.subjectvortex-induced vibrationen
dc.subjectvariable angles of excitationen
dc.subjectPiezoelectric energy harvesteren
dc.subjectdual-modal coupleden
dc.subjectbi-directionalen
dc.title不同激振角度下雙模態耦合渦流誘發振動能量採集器之設計及分析zh_TW
dc.titleDesign and Analysis of a Dual-modal Coupled Vortex-induced Piezoelectric Energy Harvester at Various Angles of Excitationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃育熙(Hsin-Tsai Liu),王建凱(Chih-Yang Tseng)
dc.subject.keyword壓電能量採集器,雙方向,渦流誘發激振,可變激振角度,雙模態耦合,zh_TW
dc.subject.keywordPiezoelectric energy harvester,bi-directional,vortex-induced vibration,variable angles of excitation,dual-modal coupled,en
dc.relation.page99
dc.identifier.doi10.6342/NTU202101358
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0907202100193900.pdf7.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved