請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80087完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林乃君(Nai-Chun Lin) | |
| dc.contributor.author | Jian-Hong Lin | en |
| dc.contributor.author | 林建宏 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:25:24Z | - |
| dc.date.available | 2021-07-20 | |
| dc.date.available | 2022-11-23T09:25:24Z | - |
| dc.date.copyright | 2021-07-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-12 | |
| dc.identifier.citation | Abd-Elnaby, H., Abou-Elela, Gehan M., and El-Sersy, N. A. (2011). Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. African Journal of Biotechnology, 10, 3412-3423. Abou-Shanab, R. A., Ghanem, K., Ghanem, N., and Al-Kolaibe, A. (2008). The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World Journal of Microbiology and Biotechnology, 24, 253-262. Ahamed, M., Akhtar, M. J., Khan, M. A. M., Alhadlaq, H. A., and Aldalbahi, A. (2017). Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids and Surfaces B: Biointerfaces, 156, 157-164. Ahmed, I., and Fujiwara, T. (2010). Mechanism of boron tolerance in soil bacteria. Canadian Journal of Microbiology, 56, 22-26. Albarracín, V. H., Winik, B., Kothe, E., Amoroso, M. J., and Abate, C. M. (2008). Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. Journal of Basic Microbiology, 48, 323-330. Alexander, D. B., and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of soils, 12, 39-45. Alfantazi, A. M., and Moskalyk, R. R. (2003). Processing of indium: a review. Minerals Engineering, 16, 687-694. Antonucci, I., Gallo, G., Limauro, D., Contursi, P., Ribeiro, A. L., Blesa, A., Berenguer, J., Bartolucci, S., and Fiorentino, G. (2018). Characterization of a promiscuous cadmium and arsenic resistance mechanism in Thermus thermophilus HB27 and potential application of a novel bioreporter system. Microbial Cell Factories, 17, 78. Barnhisel, R., and Bertsch, P. M. (1983). Aluminum. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 275-300. Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., and Mengoni, A. (2007). Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 53, 306-316. Beyersmann, D., and Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82, 493. Bremner, J. M. (1995). Recent research on problems in the use of urea as a nitrogen fertilizer. Nitrogen Economy in Tropical Soils, 321-329. Caldeira, J. B., Morais, P. V., and Branco, R. (2020). Exploiting the biological response of two Serratia fonticola strains to the critical metals, gallium and indium. Scientific Reports, 10, 1-12. Carlini, C. R., and Grossi-de-Sa´, M. F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 40, 1515-1539. Chang, H.-F., Wang, S.-L., Lee, D.-C., Hsiao, S. S., Hashimoto, Y., and Yeh, K.-C. (2020). Assessment of indium toxicity to the model plant Arabidopsis. Journal of Hazardous Materials, 387, 121983. Chang, H.-F., Wang, S.-L., and Yeh, K.-C. (2017). Effect of gallium exposure in Arabidopsis thaliana is similar to aluminum stress. Environmental Science Technology, 51, 1241-1248. Chen, H.-W. (2006). Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination Toxicology, 77. Chen, M., Lin, T., and Huang, J. (2010). Factors affecting IAA production by rhizobacteria. Plant Pathology Bulletin, 19, 201-212. Cheng, S. (2003). Heavy metal pollution in China: origin, pattern and control. Environmental Science and Pollution Research, 10, 192-198. Chitambar, C. R. (2010). Medical applications and toxicities of gallium compounds. International Journal of Environmental Research and Public Health, 7, 2337-2361. Chonan, T., Taguchi, O., and Omae, K. (2007). Interstitial pulmonary disorders in indium-processing workers. European Respiratory Journal, 29, 317-324. Çolak, F., Atar, N., Yazıcıoğlu, D., and Olgun, A. (2011). Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, 422-428. Collery, P., Keppler, B., Madoulet, C., and Desoize, B. (2002). Gallium in cancer treatment. Critical Reviews in Oncology/Hematology, 42, 283-296. Crössmann, G., and Konermann, H. (1990) Carry over, distribution and accumulation of thallium in tissues of domestic animals, field experiments with fattening bulls. Colloquium, Wien, Austria. Cummings, K. J., Donat, W. E., Ettensohn, D. B., Roggli, V. L., Ingram, P., and Kreiss, K. (2010). Pulmonary alveolar proteinosis in workers at an indium processing facility. American Journal of Respiratory and Critical Care Medicine, 181, 458-464. Cvjetko, P., Cvjetko, I., and Pavlica, M.. (2010). Thallium toxicity in humans. Arh Hig Rada Toksikol, 61, 111-118. Dash, H. R., Mangwani, N., and Das, S. (2014). Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environmental Science and Pollution Research, 21, 2642-2653. Duruibe, J. O., Ogwuegbu, M. O. C., and Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 112-118. Edwards, C L., and Hayes, R L. (1969). Tumor scanning with $ sup 67$ Ga citrate. Journal of Nuclear Medicine. 10: 103-5. Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Sarmadian, F., and Motessharezadeh, B. (2019). Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research, 26, 19804-19813. Faisal, S. A. (2017). Determination of the economic and environmental conditions for implementation of innovative recycling methods of Indium and Gallium. Lappeenranta University of Technology, Finland. Felix, N., Hoboken-Overpelt, M., and Hoboken, B. (2000). Indium and indium compounds. Ullmann's Encyclopedia of Industrial Chemistry. Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., and Gadd, G. M. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Applied and Environmental Microbiology, 71, 371-381. Foster, B., Clagett-Carr, K., Hoth, D., and Leyland-Jones, B. (1986). Gallium nitrate: the second metal with clinical activity. Cancer Treatment Reports, 70, 1311-1319. Galván-Arzate, S., Martı́nez, A., Medina, E., Santamarı́a, A., and Rı́os, C. (2000). Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicology Letters, 116, 37-43 . Galván-Arzate, S., and Ríos, C. (1994). Thallium distribution in organs and brain regions of developing rats. Toxicology, 90, 63-69. Galván-Arzate, S., and Santamarı́a, A. (1998). Thallium toxicity. Toxicology Letters, 99, 1-13. Gion, A. M. (2017). Indium partitioning between ferromagnesian phases and felsic melts: significance for ore formation and exploration. University of Maryland, College Park. Gjorgieva Ackova, D. (2018). Heavy metals and their general toxicity on plants. Plant Science Today, 5, 15-19. Gopalakrishnan, S., Vadlamudi, S., Apparla, S., Bandikinda, P., Vijayabharathi, R., Bhimineni, R. K., and Rupela, O. (2013). Evaluation of Streptomyces spp. for their plant-growth-promotion traits in rice. Canadian Journal of Microbiology, 59, 534-539. Goswami, D., Patel, K., Parmar, S., Vaghela, H., Muley, N., Dhandhukia, P., and Thakker, J. N. (2015). Elucidating multifaceted urease producing marine Pseudomonas aeruginosa BG as a cogent PGPR and bio-control agent. Plant Growth Regulation, 75, 253-263. Hard, B. C., Walther, C., and Babel, W. (1999). Sorption of aluminum by sulfate-reducing bacteria isolated from uranium mine tailings. Geomicrobiology Journal, 16, 267-275. Hart, M. M., and Adamson, R. H. (1971). Antitumor activity and toxicity of salts of inorganic group IIIa metals: aluminum, gallium, indium, and thallium. Proceedings of the National Academy of Sciences, 68, 1623-1626. Hassen, A., Saidi, N., Cherif, M., and Boudabous, A. (1998). Resistance of environmental bacteria to heavy metals. Bioresource Technology, 64, 7-15. Hedley, D. W., Tripp, E. H., Slowiaczek, P., and Mann, G. J. (1988). Effect of gallium on DNA synthesis by human T-cell lymphoblasts. Cancer Research, 48, 3014-3018. Hesse, E., O'Brien, S., Tromas, N., Bayer, F., Luján, A. M., van Veen, E. M., Hodgson, D. J., and Buckling, A. (2018). Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination. Ecology Letters, 21, 117-127. Hoet, P., De Graef, E., Swennen, B., Seminck, T., Yakoub, Y., Deumer, G., Haufroid, V., and Lison, D. (2012). Occupational exposure to indium: what does biomonitoring tell us? Toxicology Letters, 213, 122-128. Homma, S., Miyamoto, A., Sakamoto, S., Kishi, K., Motoi, N., and Yoshimura, K. (2005). Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. European Respiratory Journal, 25, 200-204. Homma, T., Ueno, T., Sekizawa, K., Tanaka, A., and Hirata, M. (2003). Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. Journal of Occupational Health, 45, 137-139. Horn, E. (1936). The effect of thallium on plant growth. US Department of Agriculture. Iyer, A., Mody, K., and Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340-343. Jensen, H. (2017). The mobility of two emerging contaminants, gallium and indium, in the soil–plant system. Lincoln University. Jensen, H., Gaw, S., Lehto, N. J., Hassall, L., and Robinson, B. H. (2018). The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209, 675-684. Jia, Y., Xiao, T., Zhou, G., and Ning, Z. (2013). Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): Soil–plant transfer and influencing factors. Science of the Total Environment, 450-451, 140-147. Jiang, J., Pan, C., Xiao, A., Yang, X., and Zhang, G. (2017). Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. 3 Biotech, 7, 5. Jiang, W., Wang, X., Osborne, O. J., Du, Y., Chang, C. H., Liao, Y.-P., Sun, B., Jiang, J., Ji, Z., and Li, R. (2017). Pro-inflammatory and pro-fibrogenic effects of ionic and particulate arsenide and indium-containing semiconductor materials in the murine lung. ACS Nano, 11, 1869-1883. Jiao, S., Chen, W., Wang, E., Wang, J., Liu, Z., Li, Y., and Wei, G. (2016). Microbial succession in response to pollutants in batch-enrichment culture. Scientific Reports, 6, 21791. Mishra, J., Singh, R., and Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706. Kabata-Pendias, A. (2000). Trace elements in soils and plants: CRC Press, 432 Kim, J.-H., Kim, S., So, J.-H., Kim, K., and Koo, H.-J. (2018). Cytotoxicity of gallium–indium liquid metal in an aqueous environment. ACS Applied Materials Interfaces, 10, 17448-17454. Kinoshita, H., Sohma, Y., Ohtake, F., Ishida, M., Kawai, Y., Kitazawa, H., Saito, T., and Kimura, K. (2013). Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology, 164, 701-709. Kremer, R. J. (2017). Soil Health and Intensification of Agroecosytems: Chapter 16 - Biotechnology Impacts on Soil and Environmental Services. Academic Press. Kwan, K. H. M., and Smith, S. (1988). The effect of thallium on the growth of Lemna minor and plant tissue concentrations in relation to both exposure and toxicity. Environmental Pollution, 52, 203-219. Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M., Jonsson, E., and The GEMAS Project Team (2015). GEMAS: Indium in agricultural and grazing land soil of Europe—Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 154, 61-80. Léonard, A., and Gerber, G. B. (1997). Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutation Research/Reviews in Mutation Research, 387, 47-53. Leung, K. M., and Ooi, V. E. C. (2000). Studies on thallium toxicity, its tissue distribution and histopathological effects in rats. Chemosphere, 41, 155-159. Leung, W. C., Chua, H., and Lo, W. (2001). Biosorption of heavy metals by bacteria isolated from activated sludge. Springer, 171-184. Li, M., Cheng, X., and Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration Biodegradation, 76, 81-85. Liem, I., Kaiser, G., Sager, M., and Tölg, G. (1984). The determination of thallium in rocks and biological materials at ng g− 1 levels by differential-pulse anodic stripping voltammetry and electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 158, 179-197. Lison, D., Laloy, J., Corazzari, I., Muller, J., Rabolli, V., Panin, N., Huaux, F., Fenoglio, I., and Fubini, B., (2009). Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicological Sciences, 108, 472-481. Luckit, J., Mir, N., Hargreaves, M., Costello, C., and Gazzard, B. (1990). Thrombocytopenia associated with thallium poisoning. Human toxicology, 9, 47-48. Ma, Y., Rajkumar, M., Zhang, C., and Freitas, H. (2016). Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials, 320, 36-44. Marcoux, M.-A., Matias, M., Olivier, F., and Keck, G. (2013). Review and prospect of emerging contaminants in waste–key issues and challenges linked to their presence in waste treatment schemes: general aspects and focus on nanoparticles. Waste Management, 33, 2147-2156. Marzan, L. W., Hossain, M., Mina, S. A., Akter, Y., and Chowdhury, A. M. A. (2017). Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. The Egyptian Journal of Aquatic Research, 43, 65-74. Massoud, M., Karmous, I., Ferjani, E. E., and Chaoui, A. (2018). Alleviation of copper toxicity in germinating pea seeds by IAA, GA3, Ca and citric acid. Journal of Plant Interactions, 13, 21-29. Mehta, S., and Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43, 51-56. Mishra, J., Singh, R., and Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706. Misra, U., Kalita, J., Yadav, R., and Ranjan, P. (2003). Thallium poisoning: emphasis on early diagnosis and response to haemodialysis. Postgraduate Medical Journal, 79, 103-105. Miyaki, K., Hosoda, K., Hirata, M., Tanaka, A., Nishiwaki, Y., Takebayashi, T., Inoue, N., and Omae, K. (2003). Biological monitoring of indium by means of graphite furnace atomic absorption spectrophotometry in workers exposed to particles of indium compounds. Journal of Occupational Health, 45, 228-230. Moeschlin, S. (1980). Thallium poisoning. Clinical Toxicology, 17, 133-146. Mulkey, J., and Oehme, F. (1993). A review of thallium toxicity. Veterinary and Human Toxicology, 35, 445-453. Nagano, K., Nishizawa, T., Umeda, Y., Kasai, T., Noguchi, T., Gotoh, K., Ikawa, N., Eitaki, Y., Kawasumi, Y., Yamauchi, T., Arito, H., and Fukushima, S. (2011). Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. Journal of Occupational Health, 53, 175-187. Nagel, A. H., Cuss, C. W., Goss, G. G., Shotyk, W., and Glover, C. N. (2021). Chronic toxicity of waterborne thallium to Daphnia magna. Environmental Pollution, 268, 115776. Naidu, R., Arias Espana, V. A., Liu, Y., and Jit, J. (2016). Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere, 154, 350-357. Nakajima, M., Sasaki, M., Kobayashi, Y., Ohno, Y., and Usami, M. (1999). Developmental toxicity of indium in cultured rat embryos. Teratogenesis, Carcinogenesis, and Mutagenesis, 19, 205-209. Nakajima, M., Takahashi, H., Sasaki, M., Kobayashi, Y., Awano, T., Irie, D., Sakemi, K., Ohno, Y., and Usami, M., (1998). Developmental toxicity of indium chloride by intravenous or oral administration in rats. Teratogenesis, Carcinogenesis, and Mutagenesis, 18, 231-238. Nakano, M., Omae, K., Tanaka, A., Hirata, M., Michikawa, T., Kikuchi, Y., Yoshioka, N., Nishiwaki, Y., and Chonan, T. (2009). Causal relationship between indium compound inhalation and effects on the lungs. Journal of Occupational Health, 51, 513-521. National Toxicology Program (2000) NTP Toxicology and Carcinogenesis Studies of Methyleugenol (CAS NO. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies) Nelson, D. W. and Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical methods, 5, 961-1010. Noguera-Oviedo, K., and Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials, 316, 242-251. Norambuena, J., Wang, Y., Hanson, T., Boyd, J., and Barkay, T. (2018). Low-molecular-weight thiols and thioredoxins are important players in Hg (II) resistance in Thermus thermophilus HB27. Apply and Environmental Microbiology, 84, e01931-01917. Nzihou, A., and Sharrock, P. (2010). Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste and Biomass Valorization, 1, 163-174. Ontañon, O. M., Fernandez, M., Agostini, E., and González, P. S. (2018). Identification of the main mechanisms involved in the tolerance and bioremediation of Cr (VI) by Bacillus sp. SFC 500-1E. Environmental Science and Pollution Research, 25, 16111-16120. Pérez, J. A. M., García-Ribera, R., Quesada, T., Aguilera, M., Ramos-Cormenzana, A., and Monteoliva-Sánchez, M. (2008). Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World Journal of Microbiology and Biotechnology, 24, 2699-2704. Pires, C., Franco, A. R., Pereira, S. I., Henriques, I., Correia, A., Magan, N., and Castro, P. M. (2017). Metal (loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiology Journal, 34, 760-768. Rajbanshi, A. (2008). Study on heavy metal resistant bacteria in Guheswori sewage treatment plant. Our Nature, 6, 52-57. Rajkumar, M., Ae, N., Prasad, M. N. V., and Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142-149. Sauvé, S., and Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal, 8, 1-7. Schoer, J. (1984.) Thallium. In The Handbook of Environmental Chemistry, Vol. 3, Part C: Anthropogenic Compounds, ed. O. Hutzinger, pp. 143-214. Springer Verlag, Berlin. Sinha, S., and Mukherjee, S. K. (2008). Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology, 56, 55-60. Sivasakthi, S., Usharani, G., and Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African journal of agricultural research, 9, 1265-1277. Solt, J., Paschinger, H., and Broda, E. (1971). Energy-dependent uptake of thallium by Chlorella. Planta, 101, 242-250. Su, J.-Y., Syu, C.-H., and Lee, D.-Y. (2018). Growth inhibition of rice (Oryza sativa L.) seedlings in Ga-and In-contaminated acidic soils is respectively caused by Al and Al+ In toxicity. Journal of Hazardous Materials, 344, 274-282. Syu, C.-H., Chen, L.-Y., and Lee, D.-Y. (2021). The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga-and In-contaminated soils. Science of the Total Environment, 759, 143943. Syu, C.-H., Chien, P.-H., Huang, C.-C., Jiang, P.-Y., Juang, K.-W., and Lee, D.-Y. (2017). The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicology and Environmental Safety, 135, 32-39. Tabei, Y., Sonoda, A., Nakajima, Y., Biju, V., Makita, Y., Yoshida, Y., and Horie, M. (2015). Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage. The Journal of Biochemistry, 159, 225-237. Tanaka, A., Hirata, M., Kiyohara, Y., Nakano, M., Omae, K., Shiratani, M., and Koga, K. (2010). Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 518, 2934-2936. Teng, Z., Shao, W., Zhang, K., Huo, Y., and Li, M. (2019). Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management, 231, 189-197. Termorshuizen, A. J. (2014). Root pathogens, in interactions in soil: promoting plant growth. Springer, 1, 119-137. Tremel, A., Masson, P., Garraud, H., Donard, O., Baize, D., and Mench, M. (1997). Thallium in French agrosystems—II. Concentration of thallium in field-grown rape and some other plant species. Environmental Pollution, 97, 161-168. Venugopal, B. (1978). Toxicity of group III metal. Metal Toxicity in Mammals, 2, 116-121. Verma, M., Mishra, J., and Arora, N. K. (2019). Plant growth-promoting rhizobacteria: diversity and applications, in environmental biotechnology: Springer, 129-173. Webb, D., Wilson, S., and Carter, D. (1986). Comparative pulmonary toxicity of gallium arsenide, gallium (III) oxide, or arsenic (III) oxide intratracheally instilled into rats. Toxicology and Applied Pharmacology, 82, 405-416. Wood, S. A., and Samson, I. M. (2006). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28, 57-102. Yu, H.-S., and Liao, W.-T. (2011). Gallium: environmental pollution and health effects. Zhang, S., Ding, Y., Liu, B., Chang, C.-C. (2017). Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Management, 65, 113-127. Zitko, V. (1975). Toxicity and pollution potential of thallium. Science of the Total Environment, 4, 185-192. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80087 | - |
| dc.description.abstract | " 高科技產業日漸發展,為人類生活帶來更多便利,然而伴隨而來的可能會有新興汙染物的汙染,如鎵和銦。先前研究調查發現新竹科學園區之排放廢水含有 0.05~10.0 μg L-1 的銦。前人研究注重在銦對動物與植物的影響,然而對微生物之影響研究反而不多,故我們想從銦是否對微生物有毒害,及土壤中是否具有耐銦之微生物開始了解,繼而利用水稻幼苗建立之接近無菌栽培系統來探討這些微生物對植體中銦轉運之影響。利用增殖培養之方式,在平鎮與三坑子土系中共分離到 59 支能夠抗鎵、銦或鉈能力之菌株,且其中多株菌株具有能夠同時耐受兩種以上重金屬之能力;再透過培養基測試各菌株之促進植物生長 (plant growth-promoting, PGP) 能力,發現有 23 支菌具螯合鐵之能力, 10 支菌具有溶磷能力,而 36 支菌具有降解尿素之能力,但僅有 5 支菌可產生植物荷爾蒙中的吲哚乙酸 (indole acetic acid, IAA)。從銦轉運效率上升的水稻植株根部分離根圈菌與內生菌,一共分離出 9 支根圈菌和 2 支內生菌,其中 In200/SE R-2 與 In200/SE R-6 具有產生鐵載體之螯合鐵能力;In200/SE R-3、In200/SE R-4 與 In50/SE R-2 具有溶磷之能力;In200/SE R-2、In200/SE R-6、In50/SE R-1 與 In50/SE R-2 具有產生尿素酶之能力;In200/SE R-5、In200/SE R-6、In50/SE E-1、 In50/SE E-2 與 In50/SE R-1 對 200 mg/L 之銦有良好耐受性。在開蓋近無菌土壤系統中,添加Bacillus sp. E1 於土壤中且在 50 mg/L 之銦處理下,可以使水稻之地上部銦濃度累積量增加,從轉運係數 (translocation factor, TF) 值來看,In50/E1 組之 TF 值為 0.072 較 In50 組之 TF 值 0.037 來的高,表示 E1 具有增加銦在水稻中轉運之能力。除此之外,Bacillus sp. E1 菌體能夠吸附銦,量可達到約 8.37 mg/g cells。然而,E1 對水稻植體中銦之轉運增加的實際機制為何以及吸附銦的機制為何,仍需等待進一步之研究探討。本研究發現土壤中具有能夠幫助植物將銦轉運到地上部,且能吸附銦的細菌,未來應可將此菌株用於發展提升植生復育效率上,使植物吸收更多重金屬並轉運到地上部;此外,也可用在銦之回收利用,減少為了銦而過度開採造成環境之破壞。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:25:24Z (GMT). No. of bitstreams: 1 U0001-1107202101530800.pdf: 1908855 bytes, checksum: ce924135ab730a5b3b4a59d267e55b01 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "目錄 誌謝 i 摘要 iii 表目錄 vii 圖目錄 viii 壹、前人研究 1 一、新興汙染物的定義與介紹 1 二、鎵 2 (一) 鎵的特性與應用 2 (二) 鎵對動物之影響 2 (三) 鎵對人體之影響 4 (四) 鎵對植物之影響 5 三、銦 5 (一) 銦的特性與應用 5 (二) 銦對動物之影響 7 (三) 銦對人體之影響 8 (四) 銦對植物之影響 8 四、鉈 9 (一) 鉈的特性與應用 9 (二) 鉈對動物之影響 10 (三) 鉈對人體之影響 10 (四)鉈對植物之影響 11 五、微生物對重金屬之耐受機制 12 六、微生物影響重金屬對植物之毒害 12 貳、研究動機與目的 15 參、實驗設計與架構 16 肆、材料與方法 17 一、土壤採樣 17 二、土壤性質分析 17 pH 值測定 17 電導度測定 (Electrical conductivity, EC) 17 陽離子交換能力測定 (Cation exchange capacity, CEC) 17 有機碳測定 (total organic carbon, TOC) 18 可交換性鋁、鎵、銦和鉈測定分析 (Exchangeable aluminum, gallium, indium and thallium) 19 三、分離平鎮土系與三坑子土系中耐鎵、銦或鉈的細菌 19 四、耐鎵、銦或鉈細菌的篩選 20 五、促進植物生長特性分析 20 溶磷能力分析 20 產生鐵載體能力分析 20 分解尿素能力分析 21 吲哚乙酸合成能力分析 21 六、水稻育苗與未育苗之比較試驗 21 七、微生物對水稻耐受銦影響之試驗 22 八、分離水稻根圈細菌與內生細菌 23 九、水稻根圈細菌與內生細菌耐受銦能力測定 23 十、Genomic DNA 的萃取 24 十一、16S rDNA 序列分析 24 十二、植體消化與分析 25 十三、細菌吸附銦能力測定 25 十四、最小抑制濃度測試 (Minimum Inhibitory Concentration, MIC) 26 十五、統計分析 26 伍、結果 27 一、平鎮系土壤和三坑子系土壤之土壤性質 27 二、平鎮土系土壤和三坑子土系土壤中具有能夠耐受鎵、銦、鉈之微生物 27 三、平鎮土系土壤和三坑子土系土壤中的微生物具有 PGP 能力,包括溶磷、螯鐵、尿素酶和合成 IAA能力等 28 四、隨著添加銦濃度增加,水稻根部銦之累積量亦增加 29 五、無菌系統中添加微生物對不同銦濃度處理水稻生長之影響 30 六、添加土壤混合菌液可以使水稻植體地上部之銦累積濃度增加 30 七、水稻根圈細菌與內生細菌之分離與其對銦耐受性和 PGP 能力測定 31 八、根圈細菌與內生細菌之菌種鑑定 31 九、在有蓋無菌系統下,E2對水稻之生長有負面影響 32 十、在開蓋無菌土壤系統中,E1 可以使水稻植體之地上部銦濃度上升,增加銦從根部送往莖部 33 十一、內生菌 E1 對銦具有吸附能力 33 十二、銦對 E1 之最小抑制濃度 (MIC) 33 陸、討論 34 柒、參考文獻 39 扒、表 50 玖、圖 59 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 銦 | zh_TW |
| dc.subject | 耐銦細菌 | zh_TW |
| dc.subject | 轉運因子 | zh_TW |
| dc.subject | Indium | en |
| dc.subject | Oryza sativa | en |
| dc.subject | Indium-tolerant bacterium | en |
| dc.subject | Translocation factor | en |
| dc.title | 耐銦細菌對水稻幼苗中銦轉運之影響 | zh_TW |
| dc.title | Effect of the indium-tolerant bacteria on the translocation of indium in rice seedlings | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許正一(Hsin-Tsai Liu),陳佩貞(Chih-Yang Tseng),林雅芬 | |
| dc.subject.keyword | 銦,水稻,耐銦細菌,轉運因子, | zh_TW |
| dc.subject.keyword | Indium,Oryza sativa,Indium-tolerant bacterium,Translocation factor, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202101384 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1107202101530800.pdf | 1.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
