請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰(Pi-Tai Chou) | |
| dc.contributor.author | Deng-Gao Chen | en |
| dc.contributor.author | 陳登高 | zh_TW |
| dc.contributor.author | f05223171 | |
| dc.date.accessioned | 2022-11-23T09:24:22Z | - |
| dc.date.available | 2021-07-20 | |
| dc.date.available | 2022-11-23T09:24:22Z | - |
| dc.date.copyright | 2021-07-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-13 | |
| dc.identifier.citation | Chapter 1 (1)Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi S. Chem. Eur. J. 2014, 20, 2193-2200. (2)Yuan, C.; Saito, S.; Camacho, C.; Irle, S.; Hisaki, I.; Yamaguchi S. J. Am. Chem. Soc. 2013, 135, 8842-8845. (3)Shukla, D.; Wan P. J. Am. Chem. Soc. 1993, 115, 2990-2991. (4)Zhou, Z.; Chen, D.-G.; Saha, M. L.; Wang, H.; Li, X.; Chou, P.-T.; Stang, P. J. J. Am. Chem. Soc. 2019, 141, 5535-5543. (5)Zhang, Z.; Wu, Y.-S.; Tang, K.-C.; Chen, C.-L.; Ho, J.-W.; Su, J., Tian, H.; Chou, P.-T. J. Am. Chem. Soc. 2015, 137, 8509-8520. (6)Zhang, Z.; Chen, C.-L.; Chen, Y.-A.; Wei, Y.-C.; Su, J.; Tian, H.; Chou, P.-T. Angew. Chem. Int. Ed. 2018, 57, 9880-9884. (7)Chen, W.; Chen, C.-L.; Zhang, Z.; Chen, Y.-A.; Chao, W.-C.; Su, J.; Tian, H.; Chou, P.-T. J. Am. Chem. Soc. 2017, 139, 1636-1644. (8)Oldani, N.; Doorn, S. K.; Tretiak, S.; Fernandez-Alberti S. Phys. Chem. Chem. Phys. 2017, 19, 30914-30924. (9)Chen, D.-G.; Lin, T.-C.; Chen, C.-L.; Chen, Y.-T.; Chen, Y.-A.; Lee, G.-H.; Chou, P.-T.; Liao, C.-W.; Chiu, P.-C.; Chang, C.-H.; Lien, Y.-J.; Chi, Y. ACS Appl. Mater. Interfaces 2018, 10, 12886-12896. (10)Chen, D.-G.; Lin, T.-C.; Chen, Y.-A.; Chen, Y.-H.; Lin, T.-C.; Chen, Y.-T.; Chou, P.-T. J. Phys. Chem. C 2018, 122, 12215-12221. (11)Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840. (12)Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 14174-14178. (13)Cai, S.; Shi, H.; Zhang, Z.; Wang, X.; Ma, H.; Gan, N.; Wu, Q.; Cheng, Z.; Ling, K.; Gu, M.; Ma, C.; Gu, L.; An, Z.; Huang, W. Angew. Chem. Int. Ed. 2018, 57, 4005-4009. (14)Jockusch, S.; Yagci, Y. Polym. Chem. 2016, 7, 6039-6043. (15)Etherington, M. K.; Franchello, F.; Gibson, J.; Northey, T.; Santos, J.; Ward, J. S.; Higginbotham, H. F.; Data, P.; Kurowska, A.; Santos, P. L. D.; Graves, D. R.; Batsanov, A. S.; Dias, F. B.; Bryce, M. R.; Penfold, T. J.; Monkman, A. P. Nat. Commun. 2017, 8, 14987. (16)Wei, Y.-C.; Zhang, Z.; Chen, Y.-A.; Wu, C.-H.; Liu, Z.-Y.; Ho, S.-Y.; Liu, J.-C.; Lin, J.-A.; Chou, P.-T. Commun. Chem. 2019, 2, 10. (17)Shen, X. Y.; Wang, Y. J.; Zhao, E.; Yuan, W. Z.; Liu, Y.; Lu, P.; Qin, A.; Ma, Y.; Sun, J. Z.; Tang, B. Z. J. Phys. Chem. C 2013, 117, 7334-7347. (18)Nakayama, H.; Nishida, J.; Takada, N.; Sato, H.; Yamashita, Y. Chem. Mater. 2012, 24, 671-676; (19)Gong, Y.; Chen, G.; Peng, Q.; Yuan, W. Z.; Xie, Y.; Li, S.; Zhang, Y.; Tang, B. Z. Adv. Mater. 2015, 27, 6195-6201. (20)Carpick, R. W.; Sasaki, D. Y.; Burns, A. R. Langmuir 2000, 16, 1270-1278. (21)Qi, Q.; Zhang, J.; Xu, B.; Li, B.; Zhang, S. X.-A.; Tian, W. J. Phys. Chem. C 2013, 117, 24997-25003. (22)Xue, P.; Ding, J.; Wang, P.; Lu, R. J. Mater. Chem. C 2016, 4, 6688-6706. (23)Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510-3511. (24)Marion, N.; Navarro, O.; Mei, J. G.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101-4111. (25)Jin, Z.; Guo, S.-X.; Gu, X.-P.; Qiu, L.-L.; Song, H.-B.; Fang, J.-X. Adv. Synth. Catal. 2009, 351, 1575-1585. (26)Klein, C. L.; Conrad, J. M.; Morris, S. A. Acta Crystallogr. 1985, 41, 1202-1240. Chapter 2 (1)Branden, C.; Tooze, J. Introduction to Protein Structure; Garland Science: New York, 1999. (2)Lodish, H.; Berk, A.; Kaiser, A. C.; Krieger, M.; Scoot, M. P.; Brescher, A.; Ploegh, H.; Matsudaira, P. Molecular Cell Biology; W. H. Freeman: New York, 2007. (3)Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001-7045. (4)Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810-6918. (5)Zarra, S.;Wood, D. M.; Roberts, D. A.; Nitschke, J. R. Chem. Soc. Rev. 2015, 44, 419-432. (6)Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature 2016, 540, 563-566. (7)Zhang, Z.; Wang, H.; Wang, X.; Li, Y.; Song, B.; Bolarinwa, O.; Reese, R. A.; Zhang, T.; Wang, X.-Q.; Cai, J.; Xu, B.; Wang, M.; Liu, C.; Yang, H.-B.; Li, X. J. Am. Chem. Soc. 2017, 139, 8174-8185. (8)Pan, M.; Wu, K.; Zhang, J.-H.; Su, C.-Y. Coord. Chem. Rev. 2019, 378, 333-349. (9)Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012-3035. (10)Saha, M. L.; Yan, X.; Stang, P. J. Acc. Chem. Res. 2016, 49, 2527-2539. (11)Szalo ́ki, G.; Croue ́, V.; Carre ́, V.; Aubriet, F.; Ale ́ve ̂que, O.; Levillain, E.; Allain, M.; Arago ́, J.; Ortí, E.; Goeb, S.; Salle ́, M. Angew. Chem. Int. Ed. 2017, 56, 16272-16276. (12)Jansze, S. M.; Severin, K. Acc. Chem. Res. 2018, 51, 2139-2147. (13)Zhang, D.; Ronson, T. K.; Nitschke, J. R. Acc. Chem. Res. 2018, 51, 2423-2436. (14)Pullen, S.; Clever, G. H. Acc. Chem. Res. 2018, 51, 3052-3064. (15)Wu, G.-Y.; Chen, L.-J.; Xu, L.; Zhao, X.-L.; Yang, H.-B. Coord. Chem. Rev. 2018, 369, 39-75. (16)Ostroverkhova, O. Chem. Rev. 2016, 116, 13279-13412. (17)Mako, T. L.; Racicot, J. M.; Levine, M. Chem. Rev. 2019, 119, 322-477. (18)Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718-11940. (19)Xu, L.; Wang, Y.-X.; Yang, H.-B. Dalton Trans. 2015, 44, 867-890. (20)Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y. Chem. Rev. 2018, 118, 8889-8935. (21)Jing, X.; He, C.; Zhao, L.; Duan, C. Acc. Chem. Res. 2019, 52, 100-109. (22)Pollock, J. B.; Schneider, G. L.; Cook, T. R.; Davies, A. S.; Stang, P. J. J. Am. Chem. Soc. 2013, 135, 13676-13679. (23)Neelakandan, P. P.; Jime ́ nez, A.; Nitschke, J. R. Chem. Sci. 2014, 5, 908-915. (24)Yamashina, M.; Sartin, M. M.; Sei, Y.; Akita, M.; Takeuchi, S.; Tahara, T.; Yoshizawa, M. J. Am. Chem. Soc. 2015, 137, 9266-9269. (25)Sun, Y.; Yao, Y.; Wang, H.; Fu, W.; Chen, C.; Saha, M. L.; Zhang, M.; Datta, S.; Zhou, Z.; Yu, H.; Li, X.; Stang, P. J. J. Am. Chem. Soc. 2018, 140, 12819-12828. (26)Chang, X.; Zhou, Z.; Shang, C.; Wang, G.; Wang, Z.; Qi, Y.; Li, Z.-Y.; Wang, H.; Cao, L.; Li, X.; Fang, Y.; Stang, P. J. J. Am. Chem. Soc. 2019, 141, 1757-1765. (27)Zhang, Z.; Wu, Y.-S.; Tang, K.-C.; Chen, C.-L.; Ho, J.-W.; Su, J.; Tian, H.; Chou, P.-T. J. Am. Chem. Soc. 2015, 137, 8509-8520. (28)Zhang, Z. Y.; Chen, C. L.; Chen, Y. A.; Wei, Y. C.; Su, J. H.; Tian, H.; Chou, P. T. Angew. Chem. Int. Ed. 2018, 57, 9880-9884. (29)Chen, W.; Chen, C. L.; Zhang, Z. Y.; Chen, Y. A.; Chao, W. C.; Su, J. H.; Tian, H.; Chou, P. T. J. Am. Chem. Soc. 2017, 139, 1636-1644. (30)Zhou, H.; Mei, J.; Chen, Y.-A.; Chen, C.-L.; Chen, W.; Zhang, Z.; Su, J.; Chou, P.-T.; Tian, H. Small 2016, 12, 6542-6546. (31)Humeniuk, H. V.; Rosspeintner, A.; Licari, G.; Kilin, V.; Bonacina, L.; Vauthey, E.; Sakai, N.; Matile, S. Angew. Chem. Int. Ed. 2018, 57, 10559-10563. (32)Dou, W.-T.; Chen, W.; He, X.-P.; Su, J.; Tian, H. Faraday Discuss. 2017, 196, 395-402. (33)Huang, W.; Sun, L.; Zheng, Z.; Su, J.; Tian, H. Chem. Commun. 2015, 51, 4462-4464. (34)Chen, D.-G.; Lin, T.-C.; Chen, C.-L.; Chen, Y.-T.; Chen, Y.-A.; Lee, G.-H.; Chou, P.-T.; Liao, C.-W.; Chiu, P.-C.; Chang, C.-H.; Lien, Y.-J.; Chi, Y. ACS Appl. Mater. Interfaces 2018, 10, 12886-12896. Chapter 3 (1)Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata, Y.; Adachi, C.; Kaji, H. Angew. Chem. Int. Ed. 2015, 54, 15231-15235. (2)Numata, M.; Yasuda, T.; Adachi, C. Chem. Commun. 2015, 51, 9443-9446. (3)Hirai, H.; Nakajima, K.; Nakatsuka, S.; Shiren, K.; Ni, J.; Nomura, S.; Ikuta, T.; Hatakeyama, T. Angew. Chem. Int. Ed. 2015, 54, 13581-13585. (4)Kitamoto, Y.; Namikawa, T.; Suzuki, T.; Miyata, Y.; Kita, H.; Sato, T.; Oi, S. Tetrahedron Lett. 2016, 57, 4914-4917. (5)Liu, Y.; Xie, G.; Wu, K.; Luo, Z.; Zhou, T.; Zeng, X.; Yu, J.; Gong, S.; Yang, C. J. Mater. Chem. C 2016, 4, 4402-4407. (6)Park, I. S.; Numata, M.; Adachi, C.; Yasuda, T. Bull. Chem. Soc. Jpn. 2016, 89, 375-377. (7)Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777-2781. (8)Shiu, Y.-J.; Cheng, Y.-C.; Tsai, W.-L.; Wu, C.-C.; Chao, C.-T.; Lu, C.-W.; Chi, Y.; Chen, Y.-T.; Liu, S.-H.; Chou, P.-T. Angew. Chem. Int. Ed. 2016, 55, 3017-3021. (9)Shiu, Y.-J.; Chen, Y.-T.; Lee, W.-K.; Wu, C.-C.; Lin, T.-C.; Liu, S.-H.; Chou, P.-T.; Lu, C.-W.; Cheng, I.-C.; Lien, Y.-J.; Chi, Y. J. Mater. Chem. C 2017, 5, 1452-1462. (10)Lien, Y.-J.; Lin, T.-C.; Yang, C.-C.; Chiang, Y.-C.; Chang, C.-H.; Liu, S.-H.; Chen, Y.-T.; Lee, G.-H.; Chou, P.-T.; Lu, C.-W.; Chi, Y. ACS Appl. Mater. Interfaces 2017, 9, 27090-27101. (11)Lee, Y. H.; Park, S.; Oh, J.; Shin, J. W.; Jung, J.; Yoo, S.; Lee, M. H. ACS Appl. Mater. Interfaces 2017, 9, 24035-24042. (12)Ji, L.; Griesbeck, S.; Marder, T. B. Chem. Sci. 2017, 8, 846-863. (13)Li, S.-Y.; Sun, Z.-B.; Zhao, C.-H. Inorg. Chem. 2017, 56, 8705-8717. (14)Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234-238. (15)Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, No. 1605444. (16)Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915-1016. (17)Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416-8433. (18)Matsuo, K.; Yasuda, T. Chem. Commun. 2017, 53, 8723-8726. (19)Zhang, Z.; Wu, Y.-S.; Tang, K.-C.; Chen, C.-L.; Ho, J.-W.; Su, J.; Tian, H.; Chou, P.-T. J. Am. Chem. Soc. 2015, 137, 8509-8520. (20)Chen, W.; Chen, C.-L.; Zhang, Z.; Chen, Y.-A.; Chao, W.-C.; Su, J.; Tian, H.; Chou, P.-T. J. Am. Chem. Soc. 2017, 139, 1636-1644. (21)Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. J. Phys. Chem. C 2014, 118, 15985-15994. (22)Ward, J. S.; Nobuyasu, R. S.; Batsanov, A. S.; Data, P.; Monkman, A. P.; Dias, F. B.; Bryce, M. R. Chem. Commun. 2016, 52, 2612-2615. (23)Xue, P.; Ding, J.; Chen, P.; Wang, P.; Yao, B.; Sun, J.; Sun, J.; Lu, R. J. Mater. Chem. C 2016, 4, 5275-5280. (24)Xu, B.; Mu, Y.; Mao, Z.; Xie, Z.; Wu, H.; Zhang, Y.; Jin, C.; Chi, Z.; Liu, S.; Xu, J.; Wu, Y.-C.; Lu, P.-Y.; Lien, A.; Bryce, M. R. Chem. Sci. 2016, 7, 2201-2206. (25)Etherington, M. K.; Franchello, F.; Gibson, J.; Northey, T.; Santos, J.; Ward, J. S.; Higginbotham, H. F.; Data, P.; Kurowska, A.; Dos Santos, P. L.; Graves, D. R.; Batsanov, A. S.; Dias, F. B.; Bryce, M. R.; Penfold, T. J.; Monkman, A. P. Nat. Commun. 2017, 8, No. 14987. (26)Okazaki, M.; Takeda, Y.; Data, P.; Pander, P.; Higginbotham, H.; Monkman, A. P.; Minakata, S. Chem. Sci. 2017, 8, 2677-2686. (27)Neena, K. K.; Sudhakar, P.; Dipak, K.; Thilagar, P. Chem. Commun. 2017, 53, 3641-3644. (28)Taniguchi, T.; Wang, J.; Irle, S.; Yamaguchi, S. Dalton Trans. 2013, 42, 620-624. (29)Rao, Y.-L.; Amarne, H.; Lu, J.-S.; Wang, S. Dalton Trans. 2013, 42, 638-644. (30)Mellerup, S. K.; Yuan, K.; Nguyen, C.; Lu, Z.-H.; Wang, S. Chem. Eur. J. 2016, 22, 12464-12472. (31)Biedermann, P. U.; Stezowski, J. J.; Agranat, I. Chem. Eur. J. 2006, 12, 3345-3354. (32)Suzuki, T.; Okada, H.; Nakagawa, T.; Komatsu, K.; Fujimoto, C.; Kagi, H.; Matsuo, Y. Chem. Sci. 2018, 9, 475-482. (33)Scherer, P. O. J.; Seilmeier, A.; Kaiser, W. J. Chem. Phys. 1985, 83, 3948-3957. (34)Laermer, F.; Elsaesser, T.; Kaiser, W. Chem. Phys. Lett. 1989, 156, 381-386. (35)Elsaesser, T.; Kaiser, W. Annu. Rev. Phys. Chem. 1991, 42, 83-107. (36)Chou, P.-T.; Chen, Y.-C.; Yu, W.-S.; Chou, Y.-H.; Wei, C.-Y.; Cheng, Y.-M. J. Phys. Chem. A 2001, 105, 1731-1740. (37)Glogowski, M. E.; Grisdale, P. J.; Williams, J. L. R.; Costa, L. J. Organomet. Chem. 1974, 74, 175-183. (38)Cornelissen-Gude, C.; Rettig, W. J. Phys. Chem. A 1999, 103, 4371-4377. (39)Adachi, C.; Baldo, M. A.; Forrest, S. R. J. Appl. Phys. 2000, 87, 8049-8055. (40)Su, S.-J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691-1693. (41)Tseng, C.-H.; Fox, M. A.; Liao, J.-L.; Ku, C.-H.; Sie, Z.-T.; Chang, C.-H.; Wang, J.-Y.; Chen, Z.-N.; Lee, G.-H.; Chi, Y. J. Mater. Chem. C 2017, 5, 1420-1435. (42)Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422-2424. (43)Goushi, K.; Kwong, R.; Brown, J. J.; Sasabe, H.; Adachi, C. J. Appl. Phys. 2004, 95, 7798-7802. (44)Zheng, Y.; Eom, S.-H.; Chopra, N.; Lee, J.; So, F.; Xue, J. Appl. Phys. Lett. 2008, 92, No. 223301. (45)Lo, D.; Chang, C.-H.; Krucaite, G.; Volyniuk, D.; Grazulevicius, J. V.; Grigalevicius, S. J. Mater. Chem. C 2017, 5, 6054-6060. (46)Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, No. 083302. (47)Su, S.-J.; Takahashi, Y.; Chiba, T.; Takeda, T.; Kido, J. Adv. Funct. Mater. 2009, 19, 1260-1267. (48)Scholz, S.; Kondakov, D.; Lu ̈ ssem, B.; Leo, K. Chem. Rev. 2015, 115, 8449-8503. Chapter 4 (1)Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341-344. (2)Homes, C. C.; Vogt, T.; Shapiro, S. M.; Wakimoto, S.; Ramirez, A. P. Science 2001, 293, 673-676. (3)Lin, J.-T.; Liao, C.-C.; Hsu, C.-S.; Chen, D.-G.; Chen, H.-M.; Tsai, M.-K.; Chou, P.-T.; Chiu, C.-W. J. Am. Chem. Soc. 2019, 141, 10324-10330. (4)Lin, J.-T.; Chen, D.-G.; Wu, C.-H.; Hsu, C.-S.; Chien, C.-Y.; Chen, H.-M.; Chou, P.-T.; Chiu, C.-W. Angew. Chem. Int. Ed. 2021, 60, 7866-7872. (5)Huang, H.; Raith, J.; Kershaw, S. V.; Kalytchuk, S.; Tomanec, O.; Jing, L.; Susha, A. S.; Zboril, R.; Rogach, A. L. Nat. Commun. 2017, 8, 996. (6)Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Nat. Commun. 2014, 5, 5757. (7)Dou, Y.; Wang, M.; Zhang, J.; Xu, H.; Hu, B. Adv. Funct. Mater. 2020, 30, 2003476. (8)Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506-514. (9)Lin, J.-T.; Chu, T.-C.; Chen, D.-G.; Huang, Z.-X.; Chen, H.-C.; Li, C.-S.; Wu, C.-I.; Chou, P.-T.; Chiu, C.-W.; Chen, H. M. ACS Appl. Energy Mater. 2021, 4, 2041-2048. (10)Bi, C.; Yao, Z.; Sun, X.; Wei, X.; Wang, J.; Tian, J. Adv. Mater. 2021, 33, 2006722. (11)He, Y.; Yan, J.; Xu, L.; Zhang, B.; Cheng, Q.; Cao, Y.; Zhang, J.; Tao, C.; Wei, Y.; Wen, K.; Kuang, Z.; Chow, G. M.; Shen, Z.; Peng, Q.; Huang, W.; Wang, J. Adv. Mater. 2021, 33, 2006302. (12)Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162-7167. (13)Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T.-W.; Scholes, G. D.; Rand, B. P. Nat. Photonics 2017, 11, 108-115. (14)Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; Cao, H.; Ke, Y.; Xu, M.; Wang, Y.; Yang, M.; Du, K.; Fu, Z.; Kong, D.; Dai, D.; Jin, Y.; Li, G.; Li, H.; Peng, Q.; Wang, J.; Huang, W. Nature 2018, 562, 249-253. (15)Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687-692. (16)Canicoba, N. D.; Zagni, N.; Liu, F.; McCuistian, G.; Fernando, K.; Bellezza, H.; Traoré, B.; Rogel, R.; Tsai, H.; Le Brizoual, L.; Nie, W.; Crochet, J. J.; Tretiak, S.; Katan, C.; Even, J.; Kanatzidis, M. G.; Alphenaar, B. W.; Blancon, J.-C.; Alam, M. A.; Mohite, A. D. ACS Mater. Lett. 2019, 1, 633-640. (17)Yu, W.; Li, F.; Yu, L.; Niazi, M. R.; Zou, Y.; Corzo, D.; Basu, A.; Ma, C.; Dey, S.; Tietze, M. L.; Buttner, U.; Wang, X.; Wang, Z.; Hedhili, M. N.; Guo, C.; Wu, T.; Amassian, A. Nat. Commun. 2018, 9, 5354. (18)Senanayak, S. P.; Abdi-Jalebi, M.; Kamboj, V. S.; Carey, R.; Shivanna, R.; Tian, T.; Schweicher, G.; Wang, J.; Giesbrecht, N.; Di Nuzzo, D.; Beere, H. E.; Docampo, P.; Ritchie, D. A.; Fairen-Jimenez, D.; Friend, R. H.; Sirringhaus, H. Sci. Adv. 2020, 6, eaaz4948. (19)Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999-3005. (20)Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Nano Lett. 2014, 14, 3608-3616. (21)Zhang, L.; Zhang, X.; Lu, G. J. Phys. Chem. Lett. 2020, 11, 6982-6989. (22)Zhai, Y.; Baniya, S.; Zhang, C.; Li, J.; Haney, P.; Sheng, C.-X.; Ehrenfreund, E.; Vardeny, Z. V. Sci. Adv. 2017, 3, e1700704. (23)Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer, H. M.; Chi, M.; Ma, C.; Sumpter, B. G.; Rondinone, A. J. ChemistrySelect 2016, 1, 1-8. (24)Long, G.; Jiang, C.; Sabatini, R.; Yang, Z.; Wei, M.; Quan, L. N.; Liang, Q.; Rasmita, A.; Askerka, M.; Walters, G.; Gong, X.; Xing, J.; Wen, X.; Quintero-Bermudez, R.; Yuan, H.; Xing, G.; Wang, X. R.; Song, D.; Voznyy, O.; Zhang, M.; Hoogland, S.; Gao, W.; Xiong, Q.; Sargent, E. H. Nat. Photonics 2018, 12, 528-533. (25)Naaman, R.; Paltiel, Y.; Waldeck, D. H. Acc. Chem. Res. 2020, 53, 2659-2667. (26)Naaman, R.; Paltiel, Y.; Waldeck, D. H. Nat. Rev. Chem. 2019, 3, 250-260. (27)Wang, L.; Xue, Y.; Cui, M.; Huang, Y.; Xu, H.; Qin, C.; Yang, J.; Dai, H.; Yuan, M., A Angew. Chem. Int. Ed. 2020, 59, 6442-6450. (28)Ma, J.; Fang, C.; Chen, C.; Jin, L.; Wang, J.; Wang, S.; Tang, J.; Li, D. ACS Nano 2019, 13, 3659-3665. (29)Long, G.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X.; Sargent, E. H.; Gao, W. Nat. Rev. Mater. 2020, 5, 423-439. (30)Lu, H.; Xiao, C.; Song, R.; Li, T.; Maughan, A. E.; Levin, A.; Brunecky, R.; Berry, J. J.; Mitzi, D. B.; Blum, V.; Beard, M. C. J. Am. Chem. Soc. 2020, 142, 13030-13040. (31)Li, D.; Liu, X.; Wu, W.; Peng, Y.; Zhao, S.; Li, L.; Hong, M.; Luo, J. Angew. Chem. Int. Ed. 2020, 60, 8415-8418. (32)Zeng, Y.-L.; Huang, X.-Q.; Huang, C.-R.; Zhang, H.; Wang, F.; Wang, Z.-X. Angew. Chem. Int. Ed. 2021, 60, 10730-10735. (33)Dong, Y.; Zhang, Y.; Li, X.; Feng, Y.; Zhang, H.; Xu, J. Small 2019, 15, 1902237. (34)Billing, D. G.; Lemmerer, A. CrystEngComm 2006, 8, 686-695. (35)Ahn, J.; Lee, E.; Tan, J.; Yang, W.; Kim, B.; Moon, J. Mater. Horiz. 2017, 4, 851-856. (36)Ahn, J.; Ma, S.; Kim, J.-Y.; Kyhm, J.; Yang, W.; Lim, J. A.; Kotov, N. A.; Moon, J. J. Am. Chem. Soc. 2020, 142, 4206-4212. (37)Sun, B.; Liu, X.-F.; Li, X.-Y.; Zhang, Y.; Shao, X.; Yang, D.; Zhang, H.-L. Chem. Mater. 2020, 32, 8914-8920. (38)Wang, R.; Hu, S.; Yang, X.; Yan, X.; Li, H.; Sheng, C. J. Mater. Chem. C 2018, 6, 2989-2995. (39)Berova, N.; Nakanishi, K.; Woody, R., Circular Dichroism. Principles and Applications 2nd Edition; Wiley, 2000. (40)Schellman, J. A. Chem. Rev. 1975, 75, 323-331. (41)Baker, B. R.; Garrell, R. L. Faraday Discuss. 2004, 126, 209-222. (42)Nakai, Y.; Mori, T.; Inoue, Y. J. Phys. Chem. A 2012, 116, 7372-7385. (43)Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Chem. Mater. 2001, 13, 3728-3740. (44)Tutaj, K.; Szlazak, R.; Starzyk, J.; Wasko, P.; Grudzinski, W.; Gruszecki, W. I.; Luchowski, R. J. Photochem. Photobiol. B, Biol. 2015, 151, 83-88. (45)C. Cohen Tannoudji; B. Diu; F. Laloe Quantum mechanics; Wiley, 1999. (46)A. E. Siegman LASERS; University Science Books, 1986. (47)Dodson, C. M.; Zia, R. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths Phys. Rev. B, 2012, 86, 125102. (48)Fitzpatrick, Richard. Maxwells Equations and the Principles of Electromagnetism.; Laxmi Publications, Ltd, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80069 | - |
| dc.description.abstract | "本論文研究主題為:「不同分子構型之光學材料設計與光譜動力學探討及其應用」,其研究方向共可細分為四大主軸:一是對一系列吩嗪衍生物經增加其分子立體障礙後對其光致激發下分子平面化及準分子行為的光譜動力學探討。二為對定制構型與放光特性之自組裝吩嗪金屬鉑雜環化合物的光物理性質及其動力學探討。三為對於具有熱延遲螢光特性的硼配位啡環有機物進行光致激發下分子平面化之結構探討與其於有機光電二極體中的相關應用。最後第四部份使用具不同構型之旋光性有機分子於有機無機混合鈣鈦礦型材料中,對其因旋光性有機分子所造成的不同圓二色性(circular dichroism)強度作探討。 於第一章節中,一系列具有不同苯環取代位置之吩嗪衍生物被合成並做其光譜鑑定。其中12-phenyl-12H-benzo[a]phenothiazine(NAS-2)因其在分子構型設計上具有相當程度的立體障礙,因此其具有光致激發態分子平面化之動力學過程。然而,此一現象在固態中因環境剛性無法成功進行,但因具有基態分子結構彎曲性的NAS-2被發現其具有準分子之行為並具有壓制變色的光物理現象。搭配雙光子共軛聚焦顯微技術對其晶體由淺入深做光譜量測,以及單光子時間計數器的時間解析量測,其固態的放光與其形成準分子放光現象可被完整解析。(論文發表處:Angew. Chem. Int. Ed. 2019, 58, 13297–13301) 於第二章節中,一系列訂製構型的自組裝吩嗪金屬鉑雜環化合物被成功合成並鑑定。雖此一系列自組裝分子都具有相近的吸收波段,但其放光波長可經變換中央架橋的有機分子造成不同程度的立體障礙而做調整。搭配理論計算的結果,中央架橋的有機分子之兩端配位夾角(bite angle)、有機分子上與鉑金屬配位的兩者氮原子距離與光譜上所得的Stokes shift,三者呈現明顯的正相關。再搭配螢光上轉換系統,可發現此一系列的分子進行激發態分子結構變化的速率快慢與其使用不同有機分子架橋所造成的立體障礙有關。中央架橋配位夾角越小者,因自組裝後環起的距離較短,造成較大的立體障礙,導致分子結構緩解上需要較長的時間。此外,組裝與解組裝的可逆性探討亦在此研究中被呈現。這項研究表明了協調自組裝技術在分子維度上具有精確定制材料光物理性質的潛力。(論文發表處:J. Am. Chem. Soc. 2019, 141, 5535−5543) 於第三章節中,一同時具有激發態分子結構平面化與熱延遲螢光性質之硼配位啡環有機物(PXZBM)被成功鑑定,並進行光物理性質探討。其分子在基態具有非平面性的啡環結構,造成其在激發態過程中具有經分子平面化而後進行電荷轉移的過程,使光譜上具有相當大的 Stokes shift,在搭配螢光上轉換量測技術下,此分子平面化的動力學過程被解析出約為 890 飛秒。此外,另一經由一苯環區隔其電子受體與予體之硼配位啡環有機物(PXZPBM)亦被合成並作為對照組,因其基態不具有非平面的啡環結構,故其不進行激發態分子平面化之過程。然而兩者分子(PXZBM、PXZPBM)亦都因具有熱延遲螢光性質,皆被應用製成高效率之有機光電二極體並分別具有10.9%於橘光及22.6%於綠光之外部量子產率。(論文發表處:ACS Appl. Mater. Interfaces 2018, 10, 12886−12896) 於最後一章節,一系列具不同鹵素原子取代且有不同結構旋光性之有機物被用於製作有機無機混合鈣鈦礦型材料中,並對其整體材料不同的圓二色性(circular dichroism)強度作探討。在搭配圓二色性光譜的基礎理論下,可知此系列材料中圓二色性的強度變化可被磁躍遷偶極矩(magnetic transition dipole)所決定,而此偶集矩更是被有機物、無機物層間的晶面間距(d-spacing)所影響。因而當增加原子量自氫到氟,或自氯、溴至碘的取代過程中,晶面間距變化對偶極矩的大小造成劇烈的影響,從而降低整體材料磁躍遷偶極矩的強度,並降低圓二色性強度。此外,於晶體解析中發現,當取代原子字氟換至氯的過程中,氯取代者的晶體中有明顯的鹵素-鹵素原子作,因而能造成更好的晶體排列過程,反之此現象在氟中是不被發現的。用因此於綜合結果上,氯原子取代之有機分子在擁有最好的晶體排列面相再加上適當的晶面間距下,其所製成之鈣鈦礦材料具有最高強度之圓二色性。此章節以光物理角度對有機無機鈣鈦礦型材料之圓二色性做出系統性探討並給予相對應之合理化推論,其衍生概念可應用於設計具有高性能之自旋電子器件。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:24:22Z (GMT). No. of bitstreams: 1 U0001-1207202122552700.pdf: 13876809 bytes, checksum: 17705e8276fb2ea132db3f72c8ab598d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Content ix Index of Figures xiii Index of Schemes xxvii Index of Tables xxviii Chapter 1. Phenothiazine Scope: Steric Strain Induced Planarization and Excimer Formation 1 1.1 Introduction 1 1.2 Results and Discussion 3 1.2.1 Synthesis and Structural Characterization 3 1.2.2 Steady-state Photophysical Properties 4 1.2.3 Time-resolved Emission Spectroscopy 5 1.2.4 Computational Studies 9 1.2.5 Crystal Analysis by Two-photon Spectroscopy 10 1.3 Conclusion 15 1.4 Supplementary and Experimental Details 16 1.4.1 General Methods 16 1.4.2 Synthesis and Characterizations 18 1.4.3 Photophysical Properties for Supplementary 21 1.4.4 Computational Results for Supplementary 25 2.4.5 Crystal data and structure refinement for Supplementary 31 1.5 Author contributions: 35 1.6 References 35 Chapter 2. Designed Conformation and Fluorescence Properties of Self-Assembled Phenazine-Cored Platinum(II) Metallacycles 38 2.1 Introduction 38 2.2 Results and Discussion 40 2.2.1 Synthesis and Structural Characterization 40 2.2.2 Steady-state Photophysical Properties 42 2.2.3 Time-resolved Emission Spectroscopy 45 2.2.4 Computational Studies 52 2.2.5 Reversible Photoluminescence Tuning by Assembling/Disassembling the Metallacycles 56 2.2.6 Post-Assembly Modification for Tuning Photoluminescence. 58 2.3 Conclusion 60 2.4 Supplementary and Experimental Details 60 2.4.1 General Methods 60 2.4.2 Synthesis and Characterization of Ligand 1 62 2.4.3 Synthesis and Characterization of 4a 68 2.4.4 Synthesis and Characterization of 4b 71 2.4.5 Synthesis and Characterization of 4c 74 2.4.6 Synthesis and Characterization of 4d 77 2.4.7 Synthesis and Characterization of 4e 80 2.4.8 Synthesis and Characterization of 5a 83 2.4.9 Post-assembly modification of 5a 86 2.4.10 Photophysical Properties for Supplementary 89 2.4.11 Computational Results for Supplementary 97 2.4.12 Reversible Emission Tuning of Metallacycles 101 2.5 Author contributions: 104 2.6 References 104 Chapter 3. Optically Triggered Planarization of Boryl Substituted Phenoxazine: Another Horizon of TADF Molecules and High Performance OLEDs 109 3.1 Introduction 109 3.2 Results and Discussion 111 3.2.1 Synthesis and Structural Characterization 111 3.2.2 Steady-State Photophysical Properties 113 3.2.3 Thermally activated delay fluorescence Properties 118 3.2.4 Excited-state Structural Relaxation for PXZBM 121 3.2.5 Computational Studies 126 3.2.6 OLED Fabrication and Performance 132 1.3 Conclusion 137 3.4 Supplementary and Experimental Details 138 3.4.1 General Methods 138 3.4.2 Synthesis of PXZBM. 140 3.4.3 Characterization and Crystal Data of PXZBM: 140 3.4.5 Synthesis of PXZPBM. 141 3.4.6 Characterization and Crystal Data of PXZPBM: 141 3.4.7 Photophysical Properties for Supplementary 142 3.4.8 Computational Results for Supplementary 144 3.5 Author contributions: 144 3.6 References 145 Chapter 4. Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic-Inorganic Perovskites through Halogenation of the Organic Ions 149 4.1 Introduction 149 4.2 Results and Discussion 151 4.2.1 Structural Characterization 151 4.2.2 Steady-state Photophysical and Chiroptical Properties 153 4.2.3 Chiroptical Analysis 154 4.3 Conclusion 161 4.4 Supplementary and Experimental Details 162 4.4.1 General Methods 162 4.4.2 Synthesis of compound R- or S-IMBA 163 4.4.3 Synthesis of chiral organic ammonium iodide salts 166 4.4.4 Photophysical properties and characterization 172 4.4.5 Computational Results for Supplementary 177 4.4.6 Derivation of electric transition dipole and magnetic transition dipole 186 4.5 Author Contribution 191 4.6 References 192 | |
| dc.language.iso | en | |
| dc.subject | 材料化學 | zh_TW |
| dc.subject | 物理化學 | zh_TW |
| dc.subject | 光譜動力學 | zh_TW |
| dc.subject | 有機光電二極體 | zh_TW |
| dc.subject | Organic light emitting diode | en |
| dc.subject | Physical chemistry | en |
| dc.subject | Photodynamic | en |
| dc.subject | Material chemistry | en |
| dc.title | 不同分子構型之光學材料設計與光譜動力學探討及其應用 | zh_TW |
| dc.title | "Designs, Photodynamic Studies and Applications of Optical Materials with Different Molecular Conformations" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0001-6406-2209 | |
| dc.contributor.advisor-orcid | 周必泰(0000-0002-8925-7747) | |
| dc.contributor.oralexamcommittee | 邱靜雯(Hsin-Tsai Liu),何美霖(Chih-Yang Tseng),洪文誼,張鎮平 | |
| dc.subject.keyword | 物理化學,光譜動力學,有機光電二極體,材料化學, | zh_TW |
| dc.subject.keyword | Physical chemistry,Photodynamic,Organic light emitting diode,Material chemistry, | en |
| dc.relation.page | 195 | |
| dc.identifier.doi | 10.6342/NTU202101420 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1207202122552700.pdf | 13.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
