請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80051完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳士元(Shih-Yuan Chen) | |
| dc.contributor.author | Chiung-Yu Chen | en |
| dc.contributor.author | 陳炯佑 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:23:14Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:23:14Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-19 | |
| dc.identifier.citation | [1] R. P. Feynman, “Simulating physics with computers,” International journal of theoretical physics, vol. 21, no. 6, pp. 467–488, 1982. [2] D. Deutsch. “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proceedings of the Royal Society of London A, 400, 97–117, 1985. [3] D. Deutsch and R. Jozsa. “Rapid solutions of problems by quantum computation,” Proceedings of the Royal Society of London A, 439: 553–558, 1992. [4] D. P. DiVincenzo, “The Physical Implementation of Quantum Computation,” Fortschritte der Physik, 48, 771, 2000. [5] J. Preskill, “Quantum computing and the entanglement frontier,” Proceedings of the 25th Solvay Conference on Physics, 2012. [6] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, pp. 1484– 1509, oct 1997. [7] L. K. Grover. “A fast quantum mechanical algorithm for database search,” Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, 212–219, 1996. [8] M. H. Devoret and R. J. Schoelkopf. “Superconducting circuits for quantum information: an outlook,” Science (New York, N.Y.) 339 (6124), 1169–74, 2013. [9] R. Barends et al. “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508 (7497), 500–503, 2014. [10] J. Kelly et al. “State preservation by repetitive error detection in a superconducting quantum circuit,” Nature 519 (7541), 66–69, 2015 [11] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. “High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits,” Physical Review Letters 117 (6), 060504, 2016 [12] R. Blatt, H. H¨affner, C. F. Roos, C. Becher, and F. Schmidt-Kaler, “Ion trap quantum computing with ca+ ions,” Experimental Aspects of Quantum Computing, pp. 61– 73, Springer US, 2004. [13] S. Debnath, N. M. Linke, C. Figgatt. et al. “Demonstration of a small programmable quantum computer with atomic qubits,” Nature 536, 63–66, 2016. [14] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors,” Science, vol. 339, pp. 1174–1179, mar 2013. [15] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nature Nanotechnology, vol. 9, pp. 981–985, oct 2014. [16] W. Huang, C. H. Yang, K. W. Chan. et al. “Fidelity benchmarks for two-qubit gates in silicon,” Nature 569, 532–536, 2019. [17] C.H. Yang, R.C.C. Leon, J.C.C. Hwang. et al. “Operation of a silicon quantum processor unit cell above one kelvin,” Nature 580, 350–354, 2020. [18] L. Petit, H.G.J. Eenink, M. Russ. et al. “Universal quantum logic in hot silicon qubits,” Nature 580, 355–359, 2020. [19] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang. “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414 (6866), 883–887, 2001. [20] D. G. Cory, A. F. Fahmy, and T. F. Havel. “Ensemble quantum computing by NMR spectroscopy,” Proceedings of the National Academy of Sciences, 94(5):1634–1639, 1997. [21] Y.-S. Ding, Y.-F. Deng, Y.-Z. Zheng, “The Rise of Single-Ion Magnets as Spin Qubits,” Magnetochemistry 2016, 2, 40. [22] E. Knill, R. Laflamme, and G. J. Milburn. “A scheme for efficient quantum computation with linear optics,” Nature, 409(6816):46–52, 2001. [23] Kok P, et al. “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys 79:135–174, 2007. [24] Travis S. Humble, Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A Mohiyaddin and Ryan S Bennink. “Quantum computing circuits and devices,” IEEE Design Test, 36(3):69–94, 2019. [25] Iulia Buluta et al, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74, 2011. [26] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Applied Physics Reviews 6, 2019. [27] N. M. Linke, D. Maslov, M. Roetteler, et al. “Experimental comparison of two quantum computing architectures,” Proceedings of the National Academy of Sciences of the United States of America 114:3305-3310, 2017 Mar. [28] Gabriel Popkin, “Scientists are close to building a quantum computer that can beat a conventional one,” 2016. (http://doi.org/10.1126/science.aal0442) [29] Sigillito, A.J., Gullans, M.J., Edge, L.F. et al. “Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates,” npj Quantum Inf 5, 110, 2019 [30] Yoneda, J., Takeda, K., Otsuka, T. et al. “A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%,” Nature Nanotech 13, 102–106, 2018. [31] “https://en.wikipedia.org/wiki/Bloch_sphere” [32] “https://en.wikipedia.org/wiki/Electron_paramagnetic_resonance” [33] Daniel A. Steck, Quantum and Atom Optics, available online at http://steck.us/teaching (revision 0.13.4, 24 September 2020). [34] A. Corna, L. Bourdet, R. Maurand et al. “Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot.” npj Quantum Information 4, 6, 2018. [35] Clement Godfrin. “Quantum information processing using a molecular magnet single nuclear spin qudit. Quantum Physics [quant-ph],” Université Grenoble Alpes, 2017. English. ffNNT : 2017GREAY015ff. fftel-01648035 [36] Michael Allan Fogarty. “Spin-Based Quantum Computing with Silicon MOS Quantum Dots.” From University of New South Wales, Sydney. In November 2018. [37] Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain et al. “High-fidelity readout and control of a nuclear spin qubit in silicon.” Nature 496, 334–338, 2013. [38] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren et al. “Single-shot read-out of an individual electron spin in a quantum dot.” Nature 430, 431–435, 2004. [39] J. R. Petta, A. C. Johnson, J. M. Taylor et al. “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots.” Science vol. 309 no. 5744 2180-2184, 2005. [40] Kenta Takeda, Jun Kamioka, Tomohiro Otsuka et al. “A fault-tolerant addressable spin qubit in a natural silicon quantum dot.” Science Advances, vol. 2 no. 8, 2016. [41] J P Dehollain et al 2013 Nanotechnology 24 015202 [42] Velimir Trifunovic and Branka Jokanovic. “Review of printed Marchand and double Y baluns: characteristics and application.” IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 8, Aug 1994. [43] Velimir Trifunovic and Branka Jokanovic. “Four decade bandwidth uniplanar balun,” Electronics Lett., vol. 28, No. 6, 1992., pp. 534-535. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80051 | - |
| dc.description.abstract | 量子計算被認為是一項擁有極高潛能的科技,蘊含著徹底改變人類社會的可能性。本論文中要探討電子自旋量子位元,它是執行量子計算的基本單元,量子位元的實現手段中最著名的其中一種方式。我們提出並探討了兩種不同的結構用以有效地控制電子自旋量子位元的自旋狀態,而這兩種結構又會分為是否存在直流控制電路,也就是量子閘極的兩種情況來做個別的分析。 為了能快速地操縱電子的自旋狀態,同時避免系統遭受非預期的干擾,需要在量子點附近給予其強交流磁場並最小化交流電場,而利用短路的電路特性,就能藉由各種不同傳輸線的短路結構來產生強磁場和弱電場。 此外,為了使整個結構可以放置在同一個平面上,我們選擇了共面帶線的短路結構,環形結構,和共面波導的短路結構,開槽結構。然而,因為共面帶線屬於平衡式傳輸線,無法與為不平衡式傳輸線的同軸電纜直接相接,所以又額外使用了平衡-不平衡轉換器以連接共面帶線和共面波導,同時模擬並探討了結構中存在直流控制電路,也就是量子閘極時的情況。本論文所提出的這兩種結構的表現皆遠優於世界領先研究團隊澳洲新南威爾斯大學所提出的設計,在模擬與量測結果上的吻合度也相當的高。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:23:14Z (GMT). No. of bitstreams: 1 U0001-1507202109395600.pdf: 12232100 bytes, checksum: 5d10af49297da693266997bac9380231 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定 ii 致謝 iii 中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvi Chapter 1 Introduction 1 1.1 From Classical Computing to Quantum Computing 1 1.2 Quantum Computing and Quantum Supremacy 2 1.2.1 DiVincenzo Criteria 2 1.2.2 Quantum Supremacy 4 1.2.3 Potential Applications 5 1.3 Different Physical Realizations of Qubit 7 1.4 Silicon-Based Qubits for Quantum Computing 9 1.5 Thesis Overview 11 Chapter 2 Theory of Spin Qubit Control 13 2.1 Introduction of Qubits 13 2.2 Mechanisms for Qubit Control 14 2.2.1 Zeeman Effect 15 2.2.2 Rabi Oscillation 15 2.3 Relaxation Time and Dephasing Time 17 2.3.1 Relaxation Time 18 2.3.2 Dephasing Time 18 2.4 Relationship between Dephasing Time and Materials 21 2.5 Structures for Spin Qubit Control 22 2.6 Parameters Used for ESR Structure Evaluation 23 Chapter 3 ESR Loop and ESR Slot 26 3.1 Why Loop and Slot Structure 26 3.2 Introduction of Basic ESR Loop and ESR Slot 26 3.2.1 ESR Loop 26 3.2.2 ESR Slot 31 3.3 Analysis of ESR Loop and ESR Slot 35 3.4 ESR Loop with Balun and Tapered TL 38 3.5 ESR Slot with Tapered TL 42 3.6 Analysis of ESR Loop and ESR Slot with Balun or Tapered TL 45 Chapter 4 ESR Loop and ESR Slot with Quantum Gates 51 4.1 ESR Loop in the First Multilayer Stack-Up 51 4.2 ESR Slot in the First Multilayer Stack-Up 54 4.3 Relationship between Loss and Performance of ESR Structures 57 4.4 ESR Loop in the Second Multilayer Stack-Up 59 4.5 ESR Slot in the Second Multilayer Stack-Up 65 4.6 Analysis of the New Gate Structure 68 Chapter 5 Measurement Results and Post Simulation 72 5.1 Measurement and Post Simulation Analysis 72 5.2 Measurement Data of ESR Structures in Second Multilayer Stack-Up 79 5.3 Cryogenic Measurement Data of ESR Loop in Single Layer Stack-Up 83 Chapter 6 Conclusion 86 6.1 Summary 86 6.2 Future Work 88 References 89 | |
| dc.language.iso | en | |
| dc.subject | 自旋量子位元 | zh_TW |
| dc.subject | 電子自旋共振 | zh_TW |
| dc.subject | 量子計算 | zh_TW |
| dc.subject | 拉比振盪 | zh_TW |
| dc.subject | 平衡-不平衡轉換器 | zh_TW |
| dc.subject | Rabi oscillation | en |
| dc.subject | spin qubit | en |
| dc.subject | Balun | en |
| dc.subject | electron spin resonance | en |
| dc.subject | quantum computing | en |
| dc.title | 基於環形結構與開槽結構之電子自旋量子位元的控制 | zh_TW |
| dc.title | Electron spin qubit control based on loop structure and slot structure | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳念偉(Hsin-Tsai Liu),林坤佑(Chih-Yang Tseng),賴建伯,歐陽良昱 | |
| dc.subject.keyword | 平衡-不平衡轉換器,電子自旋共振,量子計算,拉比振盪,自旋量子位元, | zh_TW |
| dc.subject.keyword | Balun,electron spin resonance,quantum computing,Rabi oscillation,spin qubit, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU202101478 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202109395600.pdf | 11.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
