Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80049
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor程舜仁(Shun-Jen Cheng)
dc.contributor.authorYu-Lun Chengen
dc.contributor.author鄭宇倫zh_TW
dc.date.accessioned2022-11-23T09:23:07Z-
dc.date.available2022-02-16
dc.date.available2022-11-23T09:23:07Z-
dc.date.copyright2022-02-16
dc.date.issued2022
dc.date.submitted2022-01-27
dc.identifier.citationA. Beilinson and J. Bernstein. Localisation de g-modules. C. R. Acad. Sci. Paris Ser. I Math., 292(1):15–18, 1981. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand. Structure of representations that are generated by vectors of highest weight. Funckcional. Anal. i Prilozen., 5(1):1–9, 1971. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand. A certain category of g-modules. Funkcional. Anal. i Prilozen., 10(2):1–8, 1976. A. Beilinson, V. Ginzburg, and W. Soergel. Koszul duality patterns in representation theory. J. Amer. Math. Soc., 9(2):473–527, 1996. J.-L. Brylinski and M. Kashiwara. Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math., 64(3):387–410, 1981. C.-W. Chen, S-.J. Cheng, and K. Coulembier. Tilting modules for classical Lie superalgebras. J. Lond. Math. Soc. (2), 103(3):870–900, 2021. C.-W. Chen, S.-J. Cheng, and L. Luo. Blocks and characters of G(3)-modules of non-integral weights. J. Algebra, 588:574–616, 2021. S.-J. Cheng and W. Wang. Dualities and Representations of Lie Superalgebras, volume 144 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. B. Elias, S. Makisumi, U. Thiel, and G. Williamson. Introduction to Soergel Bimodules, volume 5 of RSME Springer Series. Springer, Cham, 2020. M. Gorelik. Strongly typical representations of the basic classical Lie superalgebras. J. Amer. Math. Soc., 15(1):167–184, 2002. M. Geck and G. Pfeiffer. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, volume 21 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000. Harish-Chandra. On some applications of the universal enveloping algebra of a semisimple Lie algebra. Trans. Amer. Math. Soc., 70:28–96, 1951. James E. Humphreys. Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. J. E. Humphreys. Reflection Groups and Coxeter Groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990 J. E. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008. J. C. Jantzen. Moduln mit einem hochsten Gewicht, volume 750 of Lecture Notes in Mathematics. Springer, Berlin, 1979. V. Kac. Lie superalgebras. Adv. Math., 26(1):8–96, 1977. V. Kac. Representations of classical Lie superalgebras. In Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), volume 676 of Lecture Notes in Math., pages 597–626. Springer, Berlin, 1978. D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165–184, 1979. D. Kazhdan and G. Lusztig. Schubert varieties and Poincare duality. In Geometry of the Laplace operator, Proc. Sympos. Pure Math., XXXVI, pages 185–203. American Mathematical Society, Providence, RI, 1980. G. Lusztig. Characters of Reductive Groups over a Finite Field, volume 107 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1984. I. M. Musson. Lie Superalgebras and Enveloping Algebras, volume 131 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. L. E. Ross. Representations of graded Lie algebras. Trans. Amer. Math. Soc.,120:17–23, 1965. W. Soergel. Kategorie O, perverse Garben und Moduln uber den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc., 3(2):421–445, 1990. W. Soergel. Andersen filtration and hard Lefschetz. Geom. Funct. Anal., 17(6):2066–2089, 2008. D.-N. Verma. Structure of certain induced representations of complex semisimple Lie algebras. Bull. Amer. Math. Soc., 74:160–166, 1968.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80049-
dc.description.abstract在李超代數表現所形成的BGG範疇中,Gorelik證明了任意強典型區塊都與一個李代數表現的BGG範疇中的一個區塊等價。藉由將位移函子作用於合適的傾斜模並計算其結果的特徵標,我們證明了在李超代數B(m|1)的BGG範疇中,任意典型區塊都與一個強典型區塊等價,因此解決了李超代數B(m|1)在BGG範疇中的典型最高權不可約特徵標問題。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:23:07Z (GMT). No. of bitstreams: 1
U0001-2401202221413600.pdf: 292422 bytes, checksum: 67e57473373f47659a9e65e7c3312957 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements i Abstract ii 1 Introduction 1 2 Semisimple Lie algebras 3 2.1 Structure theory 3 2.2 Examples 6 2.3 Finite-dimensional representation 9 2.4 BGG category 13 3 Lie superalgebras 23 3.1 Basic definitions 23 3.2 Root systems of gl(m|n) and osp(2m+1|2n) 26 3.3 Representations 29 4 Main theorem 32 References 39
dc.language.isoen
dc.subjectBGG範疇zh_TW
dc.subject李代數zh_TW
dc.subject表現理論zh_TW
dc.subject不可約特徵標zh_TW
dc.subject李超代數zh_TW
dc.subjectrepresentation theoryen
dc.subjectirreducible characteren
dc.subjectBGG categoryen
dc.subjectLie algebraen
dc.subjectLie superalgebraen
dc.titleosp(2m+1|2)的典型最高權不可約特徵標zh_TW
dc.titleIrreducible characters of osp(2m+1|2) of typical highest weightsen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-1356-3393
dc.contributor.oralexamcommittee彭勇寧(Tien-Yi Chao),陳志瑋(Nai-Nu Yang),賴俊儒
dc.subject.keyword李代數,李超代數,表現理論,不可約特徵標,BGG範疇,zh_TW
dc.subject.keywordLie algebra,Lie superalgebra,representation theory,irreducible character,BGG category,en
dc.relation.page41
dc.identifier.doi10.6342/NTU202200190
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-01-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-2401202221413600.pdf285.57 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved