Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宜芳(Yi-Fang Tsay)
dc.contributor.authorWei-Chi Syuen
dc.contributor.author許為綺zh_TW
dc.date.accessioned2021-05-19T18:02:14Z-
dc.date.available2023-02-05
dc.date.available2021-05-19T18:02:14Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-05
dc.identifier.citationAlsterfjord, M., Sehnke, P.C., Arkell, A., Larsson, H., Svennelid, F., Rosenquist, M., Ferl, R.J., Sommarin, M., and Larsson, C. (2004). Plasma membrane H(+)-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H(+)-ATPase interaction. Plant Cell Physiol. 45, 1202-1210.
Axelsen, K.B., and Palmgren, M.G. (2001). Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126, 696-706.
Axelsen, K.B., Venema, K., Jahn, T., Baunsgaard, L., and Palmgren, M.G. (1999). Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Biochemistry 38, 7227-7234.
Baunsgaard, L., Fuglsang, A.T., Jahn, T., Korthout, H.A., de Boer, A.H., and Palmgren, M.G. (1998). The 14-3-3 proteins associate with the plant plasma membrane H(+)-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J. 13, 661-671.
Baxter, I.R., Young, J.C., Armstrong, G., Foster, N., Bogenschutz, N., Cordova, T., Peer, W.A., Hazen, S.P., Murphy, A.S., and Harper, J.F. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 102, 2649-2654.
Bock, K.W., Honys, D., Ward, J.M., Padmanaban, S., Nawrocki, E.P., Hirschi, K.D., Twell, D., and Sze, H. (2006). Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 140, 1151-1168.
Böhlke, J.K., de Laeter, J.R., De Bievre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R., and Taylor, P.D.P. (2005). Isotopic Compositions of the Elements, 2001. Journal of Physical and Chemical Reference Data 34, 57-67.
Cid, A., Perona, R., and Serrano, R. (1987). Replacement of the promoter of the yeast plasma membrane ATPase gene by a galactose-dependent promoter and its physiological consequences. Curr. Genet. 12, 105-110.
Crawford, N.M. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell 7, 859-868.
Crawford, N.M., and Glass, A.D.M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3, 389-395.
DeWitt, N.D., Harper, J.F., and Sussman, M.R. (1991). Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J. 1, 121-128.
Engelsberger, W.R., and Schulze, W.X. (2012). Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J. 69, 978-995.
Eraso, P., and Portillo, F. (1994). Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J. Biol. Chem. 269, 10393-10399.
Fuglsang, A.T., Tulinius, G., Cui, N., and Palmgren, M.G. (2006). Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein. Physiol. Plant. 128, 334-340.
Fuglsang, A.T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O.N., Aducci, P., and Palmgren, M.G. (1999). Binding of 14-3-3 protein to the plasma membrane H(+)-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947). J. Biol. Chem. 274, 36774-36780.
Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q., Song, C., Kristiansen, K.A., Bych, K., Schulz, A., Shabala, S., Schumaker, K.S., Palmgren, M.G., and Zhu, J.K. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617-1634.
Fuglsang, A.T., Kristensen, A., Cuin, T.A., Schulze, W.X., Persson, J., Thuesen, K.H., Ytting, C.K., Oehlenschlaeger, C.B., Mahmood, K., Sondergaard, T.E., Shabala, S., and Palmgren, M.G. (2014). Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. Plant J. 80, 951-964.
Gaxiola, R.A., Palmgren, M.G., and Schumacher, K. (2007). Plant proton pumps. FEBS Lett. 581, 2204-2214.
Harper, J.F., Manney, L., DeWitt, N.D., Yoo, M.H., and Sussman, M.R. (1990). The Arabidopsis thaliana plasma membrane H(+)-ATPase multigene family. Genomic sequence and expression of a third isoform. J. Biol. Chem. 265, 13601-13608.
Haruta, M., Burch, H.L., Nelson, R.B., Barrett-Wilt, G., Kline, K.G., Mohsin, S.B., Young, J.C., Otegui, M.S., and Sussman, M.R. (2010). Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity. J. Biol. Chem. 285, 17918-17929.
Hayashi, Y., Nakamura, S., Takemiya, A., Takahashi, Y., Shimazaki, K., and Kinoshita, T. (2010). Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase. Plant Cell Physiol. 51, 1186-1196.
Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138, 1184-1194.
Houlne, G., and Boutry, M. (1994). Identification of an Arabidopsis-Thaliana Gene Encoding a Plasma-Membrane H+-Atpase Whose Expression Is Restricted to Anther Tissues. Plant J. 5, 311-317.
Jahn, T., Fuglsang, A.T., Olsson, A., Bruntrup, I.M., Collinge, D.B., Volkmann, D., Sommarin, M., Palmgren, M.G., and Larsson, C. (1997). The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase. Plant Cell 9, 1805-1814.
Kinoshita, T., and Shimazaki, K. (1999). Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18, 5548-5558.
Kinoshita, T., and Hayashi, Y. (2011). New insights into the regulation of stomatal opening by blue light and plasma membrane H(+)-ATPase. International review of cell and molecular biology 289, 89-115.
Krouk, G., Crawford, N.M., Coruzzi, G.M., and Tsay, Y.F. (2010a). Nitrate signaling: adaptation to fluctuating environments. Curr. Opin. Plant Biol. 13, 266-273.
Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., Hoyerova, K., Tillard, P., Leon, S., Ljung, K., Zazimalova, E., Benkova, E., Nacry, P., and Gojon, A. (2010b). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18, 927-937.
Leran, S., Munos, S., Brachet, C., Tillard, P., Gojon, A., and Lacombe, B. (2013). Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Molecular plant 6, 1984-1987.
Lin, S.H., Kuo, H.F., Canivenc, G., Lin, C.S., Lepetit, M., Hsu, P.K., Tillard, P., Lin, H.L., Wang, Y.Y., Tsai, C.B., Gojon, A., and Tsay, Y.F. (2008). Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20, 2514-2528.
Liu, K.H., and Tsay, Y.F. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005-1013.
Meharg, A.A., and Blatt, M.R. (1995). NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J. Membr. Biol. 145, 49-66.
Moran, S. (2011). Nitrogen pollution disrupts Pacific Ocean. Nature.
Morsomme, P., Dambly, S., Maudoux, O., and Boutry, M. (1998). Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J. Biol. Chem. 273, 34837-34842.
Morsomme, P., de Kerchove d’Exaerde, A., DeMeester, S., Thines, D., Goffeau, A., and Boutry, M. (1996). Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH. EMBO J. 15, 5513-5526.
Morth, J.P., Pedersen, B.P., Buch-Pedersen, M.J., Andersen, J.P., Vilsen, B., Palmgren, M.G., and Nissen, P. (2011). A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell Biol. 12, 60-70.
Nikolic, M., Cesco, S., Monte, R., Tomasi, N., Gottardi, S., Zamboni, A., Pinton, R., and Varanini, Z. (2012). Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H(+)-ATPase activity and abundance. BMC Plant Biol. 12, 66.
Palmgren, M.G. (2001). PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 817-845.
Palmgren, M.G., and Christensen, G. (1993). Complementation in situ of the yeast plasma membrane H(+)-ATPase gene pma1 by an H(+)-ATPase gene from a heterologous species. FEBS Lett. 317, 216-222.
Palmgren, M.G., Larsson, C., and Sommarin, M. (1990). Proteolytic activation of the plant plasma membrane H(+)-ATPase by removal of a terminal segment. J. Biol. Chem. 265, 13423-13426.
Parker, J.L., and Newstead, S. (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507, 68-72.
Parker, J.L., Mindell, J.A., and Newstead, S. (2014). Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3, e04273.
Pedersen, B.P., Buch-Pedersen, M.J., Morth, J.P., Palmgren, M.G., and Nissen, P. (2007). Crystal structure of the plasma membrane proton pump. Nature 450, 1111-1114.
Pii, Y., Alessandrini, M., Guardini, K., Zamboni, A., and Varanini, Z. (2014). Induction of high-affinity NO3– uptake in grapevine roots is an active process correlated to the expression of specific members of the NRT2 and plasma membrane H+-ATPase gene families. Funct. Plant Biol. 41, 353-365.
Regenberg, B., Villalba, J.M., Lanfermeijer, F.C., and Palmgren, M.G. (1995). C-terminal deletion analysis of plant plasma membrane H(+)-ATPase: yeast as a model system for solute transport across the plant plasma membrane. Plant Cell 7, 1655-1666.
Rudashevskaya, E.L., Ye, J., Jensen, O.N., Fuglsang, A.T., and Palmgren, M.G. (2012). Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J. Biol. Chem. 287, 4904-4913.
Shahollari, B., Peskan-Berghofer, T., and Oelmuller, R. (2004). Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol. Plant. 122, 397-403.
Spartz, A.K., Ren, H., Park, M.Y., Grandt, K.N., Lee, S.H., Murphy, A.S., Sussman, M.R., Overvoorde, P.J., and Gray, W.M. (2014). SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis. Plant Cell 26, 2129-2142.
Sun, J., Bankston, J.R., Payandeh, J., Hinds, T.R., Zagotta, W.N., and Zheng, N. (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73-77.
Takahashi, K., Hayashi, K., and Kinoshita, T. (2012). Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 159, 632-641.
Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M. (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705-713.
Tsay, Y.F., Chiu, C.C., Tsai, C.B., Ho, C.H., and Hsu, P.K. (2007). Nitrate transporters and peptide transporters. FEBS Lett. 581, 2290-2300.
Ueno, K., Kinoshita, T., Inoue, S., Emi, T., and Shimazaki, K. (2005). Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol. 46, 955-963.
Vitart, V., Baxter, I., Doerner, P., and Harper, J.F. (2001). Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J. 27, 191-201.
Wang, R., and Crawford, N.M. (1996). Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. Proceedings of the National Academy of Sciences of the United States of America 93, 9297-9301.
Wen, C.G., and Chang, C.H. (2008). Non-point Pollution of Nitrogen and Phosphorus from Agriculture in Taiwan. In (Special Publication of TARI No. 134)Proceedings of Conference on Non-point Pollution from griculture, pp. 23-40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8002-
dc.description.abstractCHL1是一個協同運輸的硝酸鹽轉運蛋白,它透過氫離子驅動力的協助來運輸硝酸鹽。此外,CHL1還是一個雙親和性蛋白,會依據環境中硝酸鹽濃度而改變其對硝酸鹽的親和性。本實驗室先前酵母菌雙雜合篩選中,發現CHL1會與氫離子幫浦AHA2互相結合。已知AHA2是一個能創造氫離子驅動力的自我抑制型幫浦蛋白,需要其它激酶或去磷酸酶對AHA2蛋白質C端R domain進行磷酸化或去磷酸化修飾,才可以調控其氫離子幫浦活性。本研究針對CHL1在運輸硝酸鹽上對氫離子的需求,以及CHL1與AHA2的結合進行分析。爪蟾卵硝酸鹽吸收實驗結果顯示,在植物生理pH值範圍內,CHL1在高親和性模式下,硝酸鹽吸收能力隨pH值下降而上升;在低親和性模式下,吸收能力幾乎不受pH值影響。以酵母菌雙雜合實驗分析CHL1與AHA2的結合,發現不同親和性模式下的CHL1與AHA2的結合強度沒有差異。而CHL1除了能與AHA2結合之外,還可以與同一家族的AHA1、4、11互相結合。分析CHL1與AHA2的不同片段區域之結合強度,發現CHL1與AHA2的R domain結合能力非常微弱,而對AHA2之第七到第十個穿膜蛋白的結合能力最強,但若第七到第十個穿膜蛋白,加上最末端R domain,則結合能力會下降,推測R domain會阻礙CHL1與AHA2的結合。我們亦使用電腦模擬CHL1與AHA2可能的結合方式,並與酵母菌雙雜合試驗結果進行比較,推論出最有可能之結果。此外,也發現能調控CHL1親和性轉換的CIPK23與ANI皆會與AHA2結合,且這樣的結合需要R domain的存在,推測它們能夠調控AHA2的活性。但是,我們以RS-72互補實驗發現,CHL1、CIPK23皆無法獨自活化AHA2的氫離子幫浦活性。我們推測,CHL1可能需要與CIPK23或其他蛋白共同合作,才有辦法對AHA2進行調控。zh_TW
dc.description.abstractCHL1, using proton gradient as driving force to transport nitrate, is a nitrate co-transporter. Moreover, it is a dual-affinity transporter that can switch nitrate affinity according to the nitrate concentrations in the environment. Previous study in our lab found that CHL1 can interact with AHA2, a H+-ATPase, in a yeast two-hybrid screen. AHA2 generates the proton motive force but is an auto-inhibited proton pump. It needs kinase and phosphatase to modified the C-terminal R domain to regulate the pump activity. In this study, I focus on the requirement of proton motive force on CHL1 nitrate uptake and the interaction between CHL1 and AHA2. In the oocyte nitrate uptake study, we found that within the plant physiological pH range, high-affinity transport activity of CHL1 showed more dramatic difference between low pH and high pH condition; while the low-affinity transport activity of CHL1 show little or not difference between low- and high-pH condition. Yeast two-hybrid study showed that AHA2 can interact both CHL1 T101A and CHL1 T101D suggesting that CHL1 at both high- and low-affinity modes can interact with AHA2. CHL1 can also interact with other AHA family member including AHA1, AHA4 and AHA11. Analyzing the interaction between CHL1 and different truncated forms of AHA2, we found the interaction between CHL1 and AHA2 R domain is very weak, and the AHA2 transmembrane domain 7 to 10 has the strongest interaction with CHL1. But the R domain hampered the interaction between CHL1 and AHA2 as AHA2 transmembrane domain 7 to 10 with R domain interact with CHL1 weaker than the one without R domain. We also use computer to simulate the interaction model between CHL1 and AHA2 to predict the potential model that can accommodate yeast two-hybrid results. We also found that CIPK23 and ANI, known to regulate the CHL1, can interact with AHA2 and their interaction with AHA2 requires the presence of R domain, suggestion that they might regulate the activity of AHA2. But using RS-72 complementation assay, we found that CHL1 and CIPK23 cannot activate the pump activity of AHA2. More study is required to find out if CHL1 need to cooperate with CIPK23 or other proteins to regulate AHA2.en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:02:14Z (GMT). No. of bitstreams: 1
ntu-104-R01B43015-1.pdf: 4837945 bytes, checksum: 20c1752592902aa6bdbc064aa5060c3f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝......................I
摘要......................II
Abstract......................III
圖目錄......................VI
第一章 前言......................1
1.1 植物對氮的吸收機制,是解決糧食與氮污染議題的一大關鍵......................1
1.2 硝酸鹽轉運系統......................1
1.3 CHL1的運輸方式-協同運輸 (Co-transport)......................2
1.4 Plasma Membrane H+-ATPase Family......................4
1.5 PM H+-ATPase的調控機制......................5
1.6 PM H+-ATPase與硝酸鹽之間的關係 ......................6
1.7 實驗目的......................6
第二章 實驗材料與方法......................8
A.非洲爪蟾卵 (Xenopus laevis oocytes) 之硝酸鹽吸收活性測定......................8
B.質體構築......................10
C.酵母菌雙雜合試驗......................15
D.西方點墨法......................16
E.RS-72 互補實驗......................17
F.ZDock蛋白質接合模擬......................18
G.蛋白質序列相似度比較......................19
H.引子列表......................19
第三章 結果......................21
3.1 氫離子驅動力對CHL1硝酸鹽轉運能力的影響......................21
3.2 CHL1與AHA2之間的結合關係......................23
3.3 CHL1與AHA family其他成員的結合關係......................26
3.4 CHL1相關激酶及去磷酸酶與AHA2之間的結合關係......................27
3.5 CHL1調控AHA2的可能性......................28
第四章 討論......................30
4.1氫離子驅動力在 CHL1硝酸鹽運輸中所扮演的角色......................30
4.2 CHL1與AHA2結合模擬圖之分析......................31
4.3 CHL1與AHA2可能存在之互動關係......................33
4.4 細胞膜上的工作群組......................34
圖表......................37
參考文獻......................62
圖目錄
圖一、CHL1在高、低親和性轉運模式下,硝酸鹽轉運能力受氫離子驅動力影響的程度不同......................38
圖二、在酵母菌之中,CHL1、CHL1-T101A、CHL1-T101D與AHA2的結合強度沒有差異......................39
圖三、在酵母菌之中,CHL1 與AHA2之R domain的結合強度顯著低於與AHA2結合的強度......................40
圖四、在酵母菌之中,CHL1與AHA2-TM7~10的結合強度最高,而R domain會降低其結合強度......................42
圖五、AHA2各片段之示意圖......................43
圖六、pDL2Nx-AHA2Δ248 與pDL2Nx-AHA2ΔR兩個蛋白質的表現量極低......................44
圖七、ZDock模擬CHL1與AHA2之結合結果- Model 1......................46
圖八、ZDock模擬CHL1與AHA2之結合結果- Model 2......................48
圖九、ZDock模擬CHL1與AHA2之結合結果- Model 3......................50
圖十、CHL1與AHA Family之間可能存在高度保留的結合位置......................51
圖十一、AHA2-R domain存在時,ANI、CIPK23和CIPK8才能夠與AHA2結合......................53
圖十二、RS-72 系統中,CHL1無法單獨活化AHA2的氫離子幫浦活性......................55
圖十三、在RS-72 系統中,CIPK23無法單獨活化AHA2的氫離子幫浦活性......................57
附圖一、在酵母菌之中,CHL1 與AHA2之R domain的結合強度顯著低於與AHA2結合的強度......................58
附圖二、在酵母菌之中,CHL1與AHA2-TM7~10的結合強度最高,而R domain會降低其結合強度......................59
附圖三、AHA family於阿拉伯芥根部的基因表現程度......................60
附圖四、AHA Family之系統分類樹及植物不同發育時期之表現量......................61
dc.language.isozh-TW
dc.title硝酸鹽轉運蛋白CHL1與氫離子幫浦AHA2的交互作用zh_TW
dc.titleThe interaction between nitrate transporter CHL1 and proton pump AHA2en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李秀敏(Hsou-min Li),董桂書(Kuei-Shu Tung)
dc.subject.keywordCHL1,AHA2,協同運輸,吸收硝酸鹽,氫離子驅動力,zh_TW
dc.subject.keywordCHL1,AHA2,Cotransport,Nitrate uptake,proton motive force,en
dc.relation.page69
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-02-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf4.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved