請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80003完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲(Hao-Che Ho) | |
| dc.contributor.author | Li-Ya Huang | en |
| dc.contributor.author | 黃莉雅 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:20:35Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:20:35Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-21 | |
| dc.identifier.citation | [1]內政部. (2015). 市區道路及附屬工程設計規範,1-133. [2]內政部建築研究所. (2012). 氣候變遷下都市地區滯洪空間之規劃,1-151. [3]內政部建築研究所. (2019).應用都市洪水即時預警模式進行滯蓄洪設施整合減災調適技術研究,1-114. [4]內政部營建署. (2010). 雨水下水道系統規劃原則檢討,1-73. [5]內政部營建署. (2010). 雨水下水道設計指南-雨水下水道工程設計,1-99. [6]內政部營建署. (2015). 水環境低衝擊開發設施操作手冊,1-202. [7]內政部營建署.(2009). 雨水下水道設施維護管理手冊,1-45. [8]王宇迪. (2019) 應用多目標基因演算法於海綿城市開發之研究. 國立台灣大學土木工程學研究所學位論文, 1-108. [9]王嘉和、游翔麟、梁益詮、王嘉瑜、張倉榮. (2019).街道與下水道之雙排水系統快速淹水模擬. 農業工程學報,65,1-17. [10]王福杰. (2018). 3Di應用於淹水即時預報之研究. 國立成功大學水利及海洋工程學系學位論文, 1-117. [11]台灣大學慶齡工業研究中心.(2019).應用高速降雨逕流模式協助擬定都市積水防治策略 [12]行政院. (2017). 前瞻基礎建設計畫(核定本),1-366. [13]何媚華. (2014). 中永和地區都市排洪系統最佳管理措施之探討. 國立台灣大學土木工程學研究所學位論文, 1-95. [14]李明儒. (2010). 雨水下水道淤積對於都市淹水之影響評估. 國立交通大學土木工程系所學位論文, 1-82. [15]李冠曄. (2009). 氣候變異對於都市淹水影響之評估與應用研究. 國立交通大學土木工程系所學位論文, 1-88. [16]林士惟. (2018).多目標基因演算法於韌性城市評估之研究. 國立台灣大學土木工程學研究所學位論文, 1-99. [17]林子皓. (2016) 低衝擊開發技術應用對於都市發展之高地排水的影響與效果─以林口區新市鎮為例, 1-106. [18]林昀柔. (2020). 都市淹水低衝擊開發改善研究─以新竹市區為例. 國立交通大學土木工程系所學位論文, 1-102. [19]徐硯庭. (2014). 低衝擊開發運用在高都市化地區的減洪成效-以新北市中永和地區為例. 國立台灣大學土木工程學研究所學位論文, 1-126. [20]高思. (2014) 低衝擊開發於降低都市淹水之效率. 國立交通大學土木工程系所學位論文, 1-125. [21]梁崇淵. (2017). 運用基因演算法探討低衝擊開發之空間配置策略-以台大校園為例. 國立台灣大學土木工程學研究所學位論文, 1-145. [22]陳志鴻. (2005). 應用淹水模式評估都市區雨水下水道之效能. 國立臺灣大學生物環境系統工程學研究所學位論文, 1-116. [23]游仲延. (2019). 利用低衝擊開發設施設置提升社區韌性之研究─以台南市東區虎尾寮為例. 國立成功大學水利及海洋工程學系學位論文, 1-64. [24]黃國文、郭品含、施上粟. (2018). 淺談超標水災緩解策略. 營建知訊,428. [25]黃耀賢. (2015) 都市低衝擊開發設施最佳化配置研究─以臺北民生社區為例. 國立台灣大學土木工程學研究所學位論文, 1-82. [26]經濟部. (2019). 中華民國108年臺灣水文年報第一部分─雨量,1-276. [27]經濟部. (2019). 中華民國108年臺灣水文年報第二部分─河川水位及流量,1-526. [28]經濟部. (2019). 中華民國108年臺灣水文年報第四部分─近海水文,1-1055. [29]經濟部. (2019). 出流管制計畫書與規劃書檢核基準及洪峰流量計算方法. 行政院公報,28. [30]經濟部水利署. (2006).易淹水地區水患治理計畫(核定本),1-27. [31]經濟部水利署. (2015). 鹽水溪及南科相關排水整體治理規劃檢討,1-377. [32]經濟部水利署. (2015). 鹽水溪治理計畫(含支流拔林溪)(第一次修正),1-68. [33]經濟部水利署. (2019). 水利法逕流分擔與出流管制彙編,1-98. [34]經濟部水利署. (2020). 逕流分擔技術手冊,1-75. [35]經濟部水利署.(2017). 流域綜合治理計畫(103-108年)(第二次修正)(核定本),1-121. [36]經濟部水利署水利規劃試驗所 (2006). 區域排水整治及環境營造規劃參考手冊,1-85. [37]經濟部水利署水利規劃試驗所. (2019). 提升即時淹水模擬效能之研究,1-202. [38]經濟部水利署水利規劃試驗所. (2020). 基隆河流域逕流分擔規劃及計畫,1-404. [39]經濟部水利署第六河川局. (2019). 鹽水溪水系風險評估,1-219. [40]經濟部水利署第六河川局. (2020). 鹽水溪水系逕流分擔評估規劃(1/2),1-284. [41]臺南市政府. (2019). 臺南市新化區雨水下水道系統檢討規劃. [42]賴桂文. (2016). HEC-RAS水理模式2D模組介紹及應用. 學術天地-工程技術新知,1-17. [43] Afifi, Z., Chu, H.J., Kuo, Y.L., Hsu, Y.C., Wong, H.K., Ali, M.Z. (2019). Residential Flood Loss Assessment and Risk Mapping from High-Resolution Simulation. Water,11,751. [44] Afshari, S., Tavakoly, A.A., Rajib, M.A., Zheng, X., Follum, M.L., Omranian, E., Fekete, B.M. (2018). Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. Journal of Hydrology,556,539-566. [45] Ahiablame, L.M., Engel, B.A., Chaubey, I. (2012). Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research.Water, Air, Soil Pollution,223,4253-4273. [46] Bach, P.M., Rauch, W., Mikkelsen, P.S., McCarthy, D.T., Deletic, A. (2014). A critical review of integrated urban water modelling e Urban drainage and beyond. Environmental Modelling Software,54,88-107. [47] Barkdoll, B.D., Kantor, C.M., Wesseldyke, E.S., Ghimire, S.R. (2016). Stormwater Low-Impact Development: A Call to Arms for Hydraulic Engineers. Journal of Hydraulic Engineering,142. [48] Bisht, D.S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo1, M., Panda, A. (2016). Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study. Nat Hazards,84,749-776. [49] Brunetti, G., Šimunek, J., Piro, P. (2016a). A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. Journal of Hydrology,540,1146-1161. [50] Brunetti, G., Šimůnek, J., Piro, P. (2016b) A Comprehensive Analysis of the Variably Saturated Hydraulic Behavior of a Green Roof in a Mediterranean Climate. Vadose Zone Journal. [51] Carrivick, J.L. (2006). Application of 2D hydrodynamic modelling to high-magnitude outburst floods: An example from Kverkfjoll, Iceland. Journal of Hydrology,321,187-199. [52] Casulli, V. (2009). A high-resolution wetting and drying algorithm for free-surface hydrodynamics. International Journal for Numerical Method in Fluids,60,391-408. [53] Casulli, V (2013). A semi-implicit numerical method for the free-surface Navier–Stokes equations. International Journal for Numerical Method in Fluids,74,605-622. [54] Casulli, V (2015). A conservative semi-implicit method for coupled surface–subsurface flows in regional scale. International Journal for Numerical Method in Fluids,79,199-214. [55] Casulli, V (2019). Computational grid, subgrid, and pixels. International Journal for Numerical Method in Fluids,90,140-155. [56] Casulli, V., Stelling, G.S. (2013). A semi-implicit numerical model for urban drainage systems. International Journal for Numerical Method in Fluids,73,600-614. [57] Chang, T.J., Wang, C.H., Chen, A.S. (2015). A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas. Journal of Hydrology,524,662-6790. [58] Chen, L., Dai, Y., Zhi, X., Xie, H., Shen, Z. (2018). Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment. Journal of Hydrology,559,110-121. [59] Cheng, T., Xu, Z., Hong, S., Song, S. (2017). Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City. Mathematical Problems in Engineering,2017. [60] Dahm, R., Hsu, C.T., Lien, H.C., Chang, C.H., Prinsen, G. (2014). Next Generation Flood Modelling using 3Di: A Case Study in Taiwan. DSD International Conference. [61] Deely, J., Hynes, S., Barquín, J., Burgess, D., Finney, G., Sili´o, A., ´Alvarez-Martínez, J.M., Bailly, D., Ball´e-B´eganton, J. (2020). Barrier identification framework for the implementation of blue and green infrastructures. Land Use Policy,99. [62] Dietz, M.E. (2007). Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water, Air, Soil Pollution,186,351-363. [63] do Lago, C.A.F. , Giacomoni, M.H., Olivera, F., Mendiondo,E.M. (2021). Assessing the Impact of Climate Change on Transportation Infrastructure Using the Hydrologic-Footprint-Residence Metric.Journal of Hydrologic Engineering,26. [64] Doong, D.J., Lo, W., Vojinovic, Z., Lee, W.L., Lee, S.P. (2016). Development of a New Generation of Flood Inundation Maps—A Case Study of the Coastal City of Tainan, Taiwan. Water,8,521. [65] Eckart, K., McPhee, Z., Bolisetti, T. (2017). Performance and implementation of low impact development – A review. Science of the Total Environment,607-608,413-432. [66] Ferguson, C., Fenner, R. (2020). The impact of Natural Flood Management on the performance of surface drainage systems: A case study in the Calder Valley. Journal of Hydrology,590. [67] Fletcher, T.D., Andrieu, H., Hamel, P. (2013). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources,51,261-279. [68] Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D., Viklander, M. (2014). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal,1-18. [69] Freni, G., Liuzzo, L. (2019). Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas. Water,11,1389. [70] Fry, T.J., Maxwell, R.M. (2017). Evaluation of distributed BMPs in an urban watershed—High resolution modeling for stormwater management. Hydrological Processes,31,2700-2712. [71] Giacomoni, M.H., Joseph, J. (2017). Multi-Objective Evolutionary Optimization and Monte Carlo Simulation for Placement of Low Impact Development in the Catchment Scale.Journal of Water Resources Planning and Management,143. [72] Giacomoni, M.H., Zechman, E.M. (2009). Hydrologic Footprint Residence: A New Metric to Assess Hydrological Alterations Due to Urbanization.World Environmental and Water Resources Congress,1209-1216. [73] Giacomoni, M.H., Zechman, E.M., Brumbelow, K. (2012) Hydrologic Footprint Residence: Environmentally Friendly Criteria for Best Management Practices.Journal of Hydrologic engineering,17,99-108. [74] Hadidi, A., Holzbecher, E., Molenaar, R.E. (2020). Flood mapping in face of rapid urbanization: a case study of Wadi Majraf-Manumah, Muscat, Sultanate of Oman. Urban Water Journal. [75] Hou, J., Yuanc, H. (2020). Optimal spatial layout of low-impact development practices based on SUSTAIN and NSGA-II. Desalination and Water Treatment,177,227-235. [76] Hsu, M.H., Chen, S.H., Chang, T.J. (2000). Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology,234,21-37. [77] Hsu, Y.C., Prinsen, G, Bouaziz, L, Lin, Y.J., Dahm, R. (2016). An Investigation of DEM Resolution Influence on Flood Inundation Simulation. Procedia Engineering, 154, 826-834. [78] Hu, C., Liu, C., Yao, Y., Wu, Q., Ma, B., Jian, S. (2020). Evaluation of the Impact of Rainfall Inputs on Urban Rainfall Models: A Systematic Review. Water,12,2484. [79] Hu, M., Sayama, T., Zhang, X., Tanaka, K., Takara, K., Yang, H. (2017). Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. Journal of Environmental Management,193,430-438. [80] Intergovernmental panel on climate change (IPCC). (2014). Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects,1-1131. [81] Intergovernmental panel on climate change (IPCC). (2014). Climate Change 2014 Impacts, Adaptation, and Vulnerability Part B: Regional Aspects,1132-1731. [82] Jia, H., Yao, H., Tang, Y., Yu, S.L., Field, R., Tafuri, A.N. (2015). LID-BMPs planning for urban runoff control and the case study in China. Journal of Environmental Management,149,65-76. [83] Lee, J.G., Selvakumar, A., Alvi, K., Riverson, J., Zhen, J.X., Shoemaker, L., Lai, F.H. (2012). A watershed-scale design optimization model for stormwater best management practices. Environmental Modelling Software,37,6-18. [84] Locatelli, L., Mark, O., Mikkelsen, P.S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., Binning, P.J. (2017). Hydrologic impact of urbanization with extensive stormwater infiltration. Journal of Hydrology,544,524-537. [85] Löwe, R., Urich, C., Domingo, N. Sto., Mark, O., Deletic, A., Arnbjerg-Nielsen, K. (2017). Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations – A new generation of urban planning tools. Journal of Hydrology,550,355-367. [86] Newcomer, M.E., Gurdak, J.J., Sklar, L.S., Nanus1, L. (2014). Urban recharge beneath low impact development and effects of climate variability and change. Water Resources Research,50,1716-1734. [87] Nicklin, H., Leicher, A.M., Dieperink, C., Leeuwen, K.V. (2019). Understanding the Costs of Inaction–An Assessment of Pluvial Flood Damages in Two European Cities. Water,11,801. [88] O'Brien, J.S., Julien, P.Y., Fullerton, W.T. (1993). Two‐Dimensional Water Flood and Mudflow Simulation.Journal of Hydraulic Engineering,119,224-261. [89] Palla, A., Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology,528,361-368. [90] Palla, A., Gnecco, I., Lanza, L.G. (2009). Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof. Journal of Hydrology,379,193-204. [91] Palla, A., Gnecco, I., La Barbera, P. (2017).The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. Journal of Environmental Management,191,297-306. [92] Patel, D.P., Ramirez, J.A., Srivastava, P.K., Bray, M., Han, D. (2017). Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5. Nat Hazards,89,93-130. [93] Peng, H.Q., Liu, Y., Wang, H.W., Ma, L.M. (2015). Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model. Environmental Science and Pollution Research,22,15712-15721. [94] Petroselli, A., Vojtek, M., Vojteková, J. (2019). Flood mapping in small ungauged basins: a comparison of different approaches for two case studies in Slovakia.Hydrology Research,50.1. [95] Platzek, F.W., Stelling, G.S., Jankowski, J.A., Patzwahl, R., Pietrzak, J.D. (2016). An efficient semi-implicit subgrid method for free-surface flows on hierarchical grids. International Journal for Numerical Method in Fluids,80,715-741. [96] Qi, Y., Chan, F.K.S., Thorne, C., O’Donnell, E., Quagliolo, C., Comino, E., Pezzoli, A., Li, L., ths, J.G., Sang, Y., Feng, M. (2020). Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water,12,2788. [97] Qin, H.P., Peng, Y.N., Tang, Q.L., Yub, S.L. (2016). A HYDRUS model for irrigation management of green roofs with awater storage layer. Ecological Engineering,95,399-408. [98] Quiroga, V.M., Kurea, S., Udoa, K., Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. RIBAGUA,3,25-33. [99] Recanatesi, F., Petroselli, A., Ripa, M.N., Leone, A. (2017). Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy). Journal of Environmental Management,201,6-18. [100] Ruheili, A.A., Dahm, R., Radke, J. (2019). Wadi flood impact assessment of the 2002 cyclonic storm in Dhofar, Oman under present and future sea level conditions. Journal of Arid Environments,165,73-80. [101] Schmitt, T.G., Thomas, M., Ettrich, N. (2004). Analysis and modeling of flooding in urban drainage systems. Journal of Hydrology,299,300-311. [102] Singh, P., Sinha, V.S.P., Vijhani, A., Pahuja, N. (2018). Vulnerability assessment of urban road network from urban flood. International Journal of Disaster Risk Reduction,28,237-250. [103] Stelling, G.S. (2012). Quadtree flood simulations with sub-grid digital elevation models. Water Management,165,567-580. [104] Stewart, R.D., Lee, J.G., Shuster, W.D., Darner, R.A. (2017). Modelling hydrological response to a fully‐monitored urban bioretention cell. Hydrological Processes,31,4626-4638. [105] Tarekegn, T.H., Haile, A.T., Rientjes, T., Reggiani, P., Alkema, D. (2010). International Journal of Applied Earth Observation and Geoinformation,12,457-465. [106] te Linde, A.H., Aerts, J.C.J.H., Bakker, A.M.R., Kwadijk, J.C.J. (2010). Simulating low‐probability peak discharges for the Rhine basin using resampled climate modeling data. Water Resources Research,46. [107] Tu, M.C., Wadzuk, B., Traver, R. (2020). Methodology to simulate unsaturated zone hydrology in Storm Water Management Model (SWMM) for green infrastructure design and evaluation. Plos One,15. [108] United States Enviromental Protection Agency. (USEPA) (2009).SUSTAIN - A Framework for Placement of Best ManagementPractices in Urban Watersheds to Protect Water Quality.1-142. [109] United States Enviromental Protection Agency. (USEPA) (2016). Storm Water Management Model Reference Manual Volume III – Water Quality.1-152. [110] United States Environmental Protection Agency. (USEPA) (2015).Storm Water Management Model User's Manual Version 5.1,1-176. [111] van 't Veld, A., Schuurmans, W., Allewijn, R. (2017). 30 jaar vooruitgang in neerslag- afvoermodellering. Stromingen,29. [112] vant's Veld, A.C.(Arnold). (2015). Potential Measures to reduce Fluvial and Tidal Floods in the Pampanga Delta. MSc Thesis.1-55. [113] Volp, N.D., van Prooijen, B.C., Stelling, G.S. (2013). A finite volume approach for shallow water flow accounting for high-resolution bathymetry and roughness data. Water Resources Research,49,4126-4135. [114] Vu, T.T., Ranzi, R. (2017). Flood risk assessment and coping capacity of floods in central Vietnam.Journal of Hydro-environment Research,14,44-60. [115] Wei, H.P., Yeh, K.C., Liou, J.J., Chen, Y.M., Cheng, C.T. (2016). Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin. Water,8,81. [116] Wu, T., Li, H.C., Wei, S.P., Chen, W.B., Chen, Y.M., Su, Y.F., Liu, J.J., Shih, H.J. (2016). A comprehensive disaster impact assessment of extreme rainfall events under climate change: a case study in Zheng-wen river basin, Taiwan. Environmental Earth Sciences,75. [117] Zhang, K., Chui, T.F.M. (2018).A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Science of the Total Environment,621,915-929. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80003 | - |
| dc.description.abstract | 在都市化與氣候變遷影響下,由於既有基礎設施老化與預算考量,將使得都市暴雨管理面臨極大挑戰。新興的暴雨管理策略隨之發展,其中低衝擊開發(LID)有透水及分散式管理的優勢,除了達到暴雨管理及水質改善的效果外,常伴有環境綠美化及微氣候調節等效益。而水利法於民國107年修法新增了逕流分擔與出流管制專章,其中逕流分擔策略是以土地與水道共同承擔洪水觀念,利用既有公有設施空間規劃逕流抑制(如LID)、逕流分散、逕流暫存(如滯洪池)及低地與逕流積水共存措施,以提升城市韌性。 逕流分擔策略中,現行洪水演算主要使用SOBEK模式,受限於模擬範圍與計算成本,僅能概估淹水區域之逕流分擔需求量,而後以估算公式計算LID設施與滯洪池的分擔潛能量,其與實際淹水區域與措施具有空間分布上的差異。在淹水改善效益評估,過往洪水分析均使用洪峰流量、總逕流量及最大淹水情形來評估,這些指標僅代表特定位置瞬時表現,無法掌握降雨事件中的洪水歷程變化。因此,本研究選擇3Di模式作為逕流分擔策略評估工具,提供快速且高精度的淹水模擬結果,並選擇淹水面積、體積以及水文滯留足跡(HFR)指標評估其在事件歷程的改善成效。 3Di模式可於河川與雨水下水道系統匯流處進行動態水位模擬,貼近真實情況。為顯示內外水動態模擬的重要性,本研究以新化區為案例,從水位歷線與淹水面積進行比較,結果顯示雨水下水道系統外水位具有時變性,若以定量的計畫水位作為邊界條件不足以描述洪水歷程,另也容易造成淹水範圍與量體的低估。尤其在高重現期長延時降雨中,外水位與集流範圍的影響更加顯著,說明現地調查與集流範圍劃設工作有其重要性,採用內外水動態模擬對逕流分攤規劃而言有其必要性。 逕流分擔策略擬定過程中,首先須盤點流域內可利用之公有設施土地,依土地利用型態設置透水鋪面、雨水花園及綠屋頂等LID設施與滯洪池並估算逕流分擔潛能量。由於逕流分擔需求量與潛能量有空間分布上的差異,本研究使用3Di模式中間流功能進行LID模擬並修改DEM資料模擬滯洪池設置作為逕流分擔情境,並與現況情境進行比較。結果顯示逕流分擔策略在淹水面積改善的表現,逕流分擔策略優於單獨使用LID或滯洪池,並以10年重現期表現最佳,LID設施則以低重現期表現較佳,在高重現期改善不明顯,但於高經濟價值用地的淹水改善成效仍不容忽視。淹水體積改善方面,大致上與淹水面積趨勢相同,惟改善百分比分析受到空間分布差異影響,還需要進一步釐清。而模擬結果也顯示上游子集水區會先發生最大淹水面積,洪水再往下游傳遞,與下游最大淹水情形會產生時間差,此將可供防災應變時評估利用洪水的時空分布差異,進行資源有效調度。逕流分擔若使用HFR來分析,以5年重現期表現最佳,相較於最大淹水情形更為敏感,且在低重現期情境下更能發揮成效。 本研究使用3Di模式以24小時降雨模擬48小時,處理研究區域內1.68億個DEM像素,計算時間約5個小時,可輸出2m解析度之淹水模擬結果,透過高精度與動態模擬結果顯示,逕流分擔策略將與傳統模擬結果有顯著差異。同時HFR指標能為減洪策略提供一個新思維,相較於淹水範圍與量體更能掌握流域內洪水歷程變化。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:20:35Z (GMT). No. of bitstreams: 1 U0001-2007202100104900.pdf: 17974148 bytes, checksum: 1c50b0e1302c487215fd234d67c1472a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究流程 4 第二章 文獻回顧 5 2.1 暴雨管理策略 5 2.2 台灣洪水治理政策 11 2.3 都市淹水模式 13 2.3.1 SOBEK 14 2.3.2 Mike 21 15 2.3.3 FLO-2D 16 2.3.4 InfoWorks ICM 17 2.3.5 HEC-RAS 18 2.3.6 3Di模式 19 2.4 LID模擬工具 21 2.4.1 SWMM模式 21 2.4.2 SUSTAIN 25 2.4.3 HYDRUS 26 2.4.4 二維淹水模式模擬LID 27 2.5 水文滯留足跡(HFR) 29 第三章 研究方法 32 3.1 3Di模式 32 3.1.1 控制方程式 33 3.1.2 數值方法 33 3.1.3 模擬過程 38 3.1.4 模型設定 39 3.1.5 LID模擬 42 3.2 逕流分擔策略 46 3.2.1 洪水演算 49 3.2.2 問題分析與探討 49 3.2.3 逕流分擔原則 50 3.2.4 逕流分擔方案初步規劃 51 3.2.5 淹水改善成效評估 52 第四章 模型建置 54 4.1 研究區域 54 4.2 建置流程 62 4.3 參數設定 64 4.4. 模型驗證 70 4.5 逕流分擔情境設置 78 第五章 結果與討論 80 5.1 內外水動態模擬比較 80 5.1.1 區域排水規劃情境 83 5.1.2 雨水下水道規劃情境 86 5.2 逕流分擔策略成效評估 90 5.2.1 洪水演算 91 5.2.2 子集水區特性分析 98 5.2.3 逕流分擔方案初步規劃 99 5.2.4 淹水改善成效評估 102 第六章 結論與建議 108 6.1 結論 108 6.2 建議 110 參考文獻 i 附錄一 符號表 ix 附錄二 模型參數列表 xi | |
| dc.language.iso | zh-TW | |
| dc.subject | 滯洪池 | zh_TW |
| dc.subject | 逕流分擔(Runoff Allocation Schemes) | zh_TW |
| dc.subject | 3Di模式 | zh_TW |
| dc.subject | 水文滯留足跡(Hydrologic footprint residence | zh_TW |
| dc.subject | HFR) | zh_TW |
| dc.subject | 低衝擊開發(Low impact development | zh_TW |
| dc.subject | Hydrologic footprint residence (HFR) | en |
| dc.subject | detention pond | en |
| dc.subject | Low impact development (LID) | en |
| dc.subject | 3Di model | en |
| dc.subject | Runoff Allocation Schemes | en |
| dc.title | 考量內外水動態模擬下之逕流分擔策略成效評估 | zh_TW |
| dc.title | Evaluation of Runoff Allocation Schemes with River Basin and Urban Drainage System. | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉克家(Hsin-Tsai Liu),楊尊華(Chih-Yang Tseng),許永佳 | |
| dc.subject.keyword | 逕流分擔(Runoff Allocation Schemes),3Di模式,水文滯留足跡(Hydrologic footprint residence, HFR),低衝擊開發(Low impact development, LID),滯洪池, | zh_TW |
| dc.subject.keyword | Runoff Allocation Schemes,3Di model,Hydrologic footprint residence (HFR),Low impact development (LID),detention pond, | en |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU202101585 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202100104900.pdf | 17.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
