Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶(Kuo-Ching Chen)
dc.contributor.authorShuenn-Jyh Changen
dc.contributor.author張舜智zh_TW
dc.date.accessioned2022-11-23T09:20:12Z-
dc.date.available2022-08-01
dc.date.available2022-11-23T09:20:12Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-22
dc.identifier.citationJ. M. Tarascon and M. Armand. Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359-367, 2001. Tara Foroozan, Soroosh Sharifi-Asl, Reza Shahbazian-Yassar. Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques. Journal of Power Sources, 461, 228135, 2020. J. D. Van der Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Journal of Statistical Physics, 20, 200-244, 1979. Vitaly L. Ginzburg. On superconductivity and superfluidity. Springer, 2009. John W. Cahn and John E. Hilliard. Free energy of a nonuniform system. I. interfacial free energy. The Journal of Chemical Physics, 28, 258, 1958. Samuel M. Allen and John W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6), 1085-1095, 1979. Ryo Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D, 60, 410-423, 1993. Ryo Kobayashi. A numerical approach to three-dimensional dendritic solidification. Experimental Mathematics, 3(1), 59-81, 1994. Ryo Kobayashi. A brief introduction to phase field method. AIP Conference Proceedings, 1270(1), 282-291, 2010. Zijian Hong and Zijian Hong. Open-sourcing phase-field simulations for accelerating energy materials design and optimization. ACS Energy Letters, 5, 3254-3259, 2020. Arpit Khandelwal, Amitabh Kumar, Rajeev Ahluwalia, Palla Murali. Crack propagation in staggered structures of biological and biomimetic composites. Computational Materials Science, 126, 238-243, 2017. Linyun Liang, Yue Qi, Fei Xue, Saswata Bhattacharya, Stephen J. Harris, and Long-Qing Chen. Nonlinear phase-field model for electrode-electrolyte interface evolution. Physical Review E, 86(5-1), 051609, 2012. Linyun Liang and Long-Qing Chen. Nonlinear phase field model for electrodeposition in electrochemical systems. Applied Physics Letters, 105(26), 263903, 2014. J. Newman and K. E. Thomas-Alyea. Electrochemical Systems. Wiley, 2004. Lei Chen, Hao Wei Zhang, Lin Yun Liang, Zhe Liu, Yue Qi, Peng Lu, James Chen, Long-Qing Chen. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model. Journal of Power Sources, 300, 376-385, 2015. Zijian Hong and Venkatasubramanian Viswanathan. Phase-field simulations of lithium dendrite growth with open-source software. ACS Energy Letters, 3, 1737-1743, 2018. Chih-Hung Chen, Chun-Wei Pao. Phase-field study of dendritic morphology in lithium metal batteries. Journal of Power Sources, 484, 229203, 2021. David R. Ely, Aniruddha Jana, R. Edwin García. Phase field kinetics of lithium electrodeposits. Journal of Power Sources, 272, 581-594, 2014. Charles Monroe and John Newman. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of The Electrochemical Society, 150(2), A396-A404, 2005. Bo Lu, Yicheng Song, Qinglin Zhang, Jie Pan, Yang-Tse Cheng, and Junqian Zhang. Voltage hysteresis of lithium ion batteries caused by mechanical stress. Physical Chemistry Chemical Physics, 18, 4721-4727, 2016. Zijian Hong, Zeeshan Ahmad, and Venkatasubramanian Viswanathan. Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes. ACS Energy Letters, 5, 2466-2474, 2020. Vitaliy Yurkiv, Tara Foroozan, Ajaykrishna Ramasubramanian, Reza Shahbazian-Yassar, and Farzad Mashayek. The influence of stress field on Li electrodeposition in Li-metal battery. MRS Communications, 8, 1285-1291, 2018. Yao Ren, Yue Zhou, and Ye Cao. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling. The Journal of Physical Chemistry C, 124, 12195-12204, 2020. J. C. Slater. Atomic Radii in Crystals. The Journal of Chemical Physics, 41, 3199, 1964. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, A32, 751-767, 1976. Daniel A. Cogswell. Quantitative phase-field modeling of dendritic electrodeposition. Physical Review E, 92, 011301, 2015. H. W. Zhang, Z. Liu, L. Liang, L.Chen, Y. Qi, S. J. Harris, P. Lu and L. Q. Chen. Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase Field Model. ECS Transactions, 61(8), 1-9, 2014. H. H. Yan, Y. H. Bie, X. Y. Cui, G. P. Xiong, L. Chen. A computational investigation of thermal effect on lithium dendrite growth. Energy Conversion and Management, 161, 193-204, 2018. Guangyu Liu and Wei Lu. A model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. Journal of The Electrochemical Society, 164(9), 1826-1833, 2017. Raúl A. Enrique, Stephen DeWitt, and Katsuyo Thornton. Morphological stability during electrodeposition. MRS Communications, 7, 658-663, 2017. Wenyu Mu, Xunliang Liu, Zhi Wen, Lin Liu. Numerical simulation of the factors affecting the growth of lithium dendrites. Journal of Energy Storage, 26, 100921, 2019. Aniruddha Jana, David R. Ely, R. Edwin García. Dendrite-separator interactions in lithium-based batteries. Journal of Power Sources, 275, 912-921, 2015. Aniruddha Jana, Sang Inn Woo, K. S. N. Vikrant, and R. Edwin García. Electrochemomechanics of lithium dendritegrowth. Energy Environmental Science, 12, 3595-3607, 2019. Vitaliy Yurkiv, Tara Foroozan, Ajaykrishna Ramasubramanian, Reza Shahbazian-Yassar, Farzad Mashayek. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior. Electrochimica Acta, 265, 609-619, 2018. Liting Gao and Zhansheng Guo. Phase-field simulation of Li dendrites with multiple parameters influence. Computational Materials Science, 183, 109919, 2020. Rui Zhang, Xin Shen, Xin-Bing Cheng, Qiang Zhang. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation. Energy Storage Materials, 23, 556-565, 2019. Zhenliang Mu, Zhipeng Guo, Yuan-Hua Lin. Simulation of 3-D lithium dendritic evolution under multiple electrochemical states: A parallel phase field approach. Energy Storage Materials, 30, 52-58, 2020. Zijian Hong and Venkatasubramanian Viswanathan. Prospect of thermal shock induced healing of lithium dendrite. ACS Energy Letters, 4, 1012-1019, 2019. Zeeshan Ahmad, Zijian Hong, and Venkatasubramanian Viswanathan. Dendrite suppression of metal electrodeposition with liquid crystalline electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 117(43), 26672-26680, 2020. Hee Jung Chang, Andrew J. Ilott, Nicole M. Trease, Mohaddese Mohammadi, Alexej Jerschow, and Clare P. Grey. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. Journal of the American Chemical Society, 137, 15209-15216, 2015. Kevin N. Wood, Eric Kazyak, Alexander F. Chadwick, Kuan-Hung Chen, Ji-Guang Zhang, Katsuyo Thornton, and Neil P. Dasgupta. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2, 790-801, 2016. Kevin N. Wood, Malachi Noked, and Neil P. Dasgupta. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Letters, 2, 664-672, 2017. Qian Cheng, Lu Wei, Zhe Liu, Zhe Liu, Zhe Sang, Bin Zhu, Weiheng Xu, Meijie Chen, Yupeng Miao, Long-Qing Chen, Wei Min, and Yuan Yang. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nature Communications, 9, 2942, 2018. Fei Ye, Xiu Zhang, Kaiming Liao, Qian Lu, Xiaohong Zou, Ran Ran, Wei Zhou, Yijun Zhong, and Zongping Shao. A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. Journal of Materials Chemistry A, 8, 9733-9742, 2020. Tao Chen, Weihua Kong, Zewen Zhang, Lei Wang, Yi Hu, Guoyin Zhu, Renpeng Chen, Lianbo Ma, Wen Yan, Yanrong Wang, Jie Liu, Zhong Jin. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 54, 17-25, 2018. Pallab Barai, Kenneth Higa, and Venkat Srinivasan. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Physical Chemistry Chemical Physics, 19, 20493-20505, 2017. Ming Zhu, Jiaxin Wu, Yue Wang, Mingming Song, Lei Long, SajidHussain Siyal, Xiaoping Yang, Gang Sui. Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry, 37, 126-142, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79995-
dc.description.abstract電池在許多電子產品中扮演著儲能的角色,須具備方便攜帶、能量密度高,其中能量密度尤其重要,而改變電極材料能夠有效提升電池的能量密度,若採用比電容量高、還原電位低的鋰金屬做為電池負極可以大幅提高電池的能量密度,然而電極表面的不均勻鋰沉積會形成鋰成核,這些成核會逐漸發展為鋰枝晶,並影響鋰金屬電池在使用上的安全性,因此了解並克服鋰電極的不均勻沉積有助於鋰電池的發展。 本研究採用相場法模擬鋰電極在液態電解液、半固態電解液中的沉積行為,並探討其中的物理現象。針對電極於液態電解液中的沉積,本研究設置了三種不均勻情形並分析各種不均勻情形在不同充電電壓下的電極沉積,其中不均勻沉積所形成之鋰成核的數量、大小與不均勻情形有所關連,而越強的充電電壓越容易造成電極表面的不均勻。 對於電極在半固態電解液中的沉積方面,模擬結果顯示半固態電解液具有減緩不均勻沉積的效果且減緩效果與其彈性係數、孔隙率有關,藉由量化指標(電極表面的粗糙度、界面伸長率)能夠精確地描述電極幾何在不同彈性係數、孔隙率之半固態電解液中的演化。另外依據界面伸長率的時間演化關係與電極表面的粗糙度所透露的訊息,我們能夠評估不同彈性係數、孔隙率之半固態電解液抑制不均勻沉積的效果之強弱。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:20:12Z (GMT). No. of bitstreams: 1
U0001-2007202119103700.pdf: 4156207 bytes, checksum: 60a3a9e3878c98256edda1954ce42d77 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"摘要 i Abstract ii 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3論文架構 2 第二章 相場法理論介紹 3 2.1多尺度模擬 3 2.2不連續界面模型與連續界面(擴散界面)模型 4 2.3相場模型的介紹 5 2.3.1 Ginzburg-Landau自由能與變分 7 2.3.2守恆場與非守恆場的演化 7 2.3.3 Allen-Cahn方程式 8 2.3.4 Allen-Cahn方程式的一維穩態解與暫態解 10 第三章 相場模型與文獻回顧 13 3.1裂紋演化之相場模型 13 3.2電化學沉積之相場模型 14 3.2.1 Liang模型(2012, 2014) 14 3.2.2 Chen模型(2015) 19 3.2.3 Hong模型(2018) 21 第四章 液態電解液中的一維電極沉積 24 4.1 相場模型的架構 24 4.1.1 相場方程式 24 4.1.2 陰陽離子的擴散方程式 25 4.1.3 電解液中的電中性 26 4.1.4 電化學相場模型之統御方程式 27 4.1.5 統御方程式的無因次化 29 4.2一維電化學相場模型的界面速度 31 4.3一維電化學相場模擬模型 33 第五章 液態電解液中的不均勻電極沉積 40 5.1不均勻性的設置 41 5.2電極表面的幾何分析 43 5.3不均勻電化學沉積相場模型的設置 44 5.4模擬結果與分析 46 5.4.1各個不均勻性的int_xi-t關係 47 5.4.2充電條件對電極幾何的影響 49 5.4.3不均勻性對電極幾何的影響 54 5.4.4電極表面的交換電流密度分佈 56 5.4.5長時間高phi_0充電下的電化學沉積 60 第六章 半固態電解液中的電極沉積 64 6.1考慮應力作用的相場方程式 64 6.2相場方程式與彈性力學的耦合 65 6.3半固態電解液中的電極沉積 68 6.3.1半固態電解液對不均勻沉積的抑制 68 6.3.2半固態電解液參數對抑制效果的影響 70 6.3.3半固態電解液參數對抑制效果的評估 72 第七章 結論與未來展望 78 7.1結論 78 7.1.1液態電解液中的一維電極沉積 78 7.1.2液態電解液中的不均勻電極沉積 79 7.1.3半固態電解液中的電極沉積 79 7.2未來展望 80 參考文獻 81 "
dc.language.isozh-TW
dc.subject相場模型zh_TW
dc.subject鋰電池zh_TW
dc.subject鋰枝晶zh_TW
dc.subject電化學沉積zh_TW
dc.subject有限元素分析zh_TW
dc.subject不均勻沉積改善zh_TW
dc.subjectCOMSOL Multiphysicszh_TW
dc.subjectlithium dendriteen
dc.subjectphase field modelen
dc.subjectfinite element analysisen
dc.subjectimprovement of non-uniform electrodepositionen
dc.subjectelectrodepositionen
dc.subjectlithium batteriesen
dc.subjectCOMSOL Multiphysicsen
dc.title以相場法模擬鋰金屬電極之電化學沉積zh_TW
dc.titleOn the Phase Field Simulation of Electrodeposition Process in Lithium Electrodeen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor陳志鴻(Chih-Hung Chen)
dc.contributor.oralexamcommittee郭志禹(Hsin-Tsai Liu),林祺皓(Chih-Yang Tseng),周鼎贏
dc.subject.keyword相場模型,鋰電池,鋰枝晶,電化學沉積,不均勻沉積改善,有限元素分析,COMSOL Multiphysics,zh_TW
dc.subject.keywordphase field model,lithium batteries,lithium dendrite,electrodeposition,improvement of non-uniform electrodeposition,finite element analysis,COMSOL Multiphysics,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202101606
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-2007202119103700.pdf4.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved