請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79980完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王俊豪(Jiun-Hao Wang) | |
| dc.contributor.author | Jui-Hsiung Chuang | en |
| dc.contributor.author | 莊瑞雄 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:19:29Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:19:29Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-22 | |
| dc.identifier.citation | 中文文獻 1.天下雜誌(2020)。全球暖化特輯,https://www.cw.com.tw/feature/topic/global-warming。(accessed on 20 Juni 2021) 2.王仕賢、楊舒涵(2019)。智慧農業計畫技術研發與推動效益。國土及公共治理季刊,7(3),72-81。 3.王抒品(2016)。以大數據分析便利商店水果購買行為之研究,中原大學資訊管理研究所學位論文,桃園:中原大學。 4.王俊豪(2007)。新農業與新農民脈絡與涵構之解析。農業推廣文彙,52,1-6。 5.王俊豪(2014)。臺灣城鄉分類系統之研究-哪裡是農村?台灣農學會報,15(1),18-38。 6.王俊豪、郭彥谷(2020)。OECD鄉村政策3.0內涵及對我國的啟示,行政院農業委會員主要國家農業政策法規與經濟動態,台北:行政院農業委員會。 7.王俊豪等(2017)。106年度智慧農業4.0職能基準課程發展計畫,研究報告,台北:農業委員會。 8.王俊豪等(2018)。107年度智慧農業4.0職能基準課程發展計畫,研究報告,台北:農業委員會。 9.王俊豪等(2019)。108年度智慧農業4.0職能基準課程發展計畫,研究報告,台北:農業委員會。 10.王曼陵(2017)。政府推動消費者以載具儲存無實體電子發票政策之關鍵成功因素,中山大學企業管理學系研究所學位論文,高雄:中山大學。 11.王淑芬(2017)。發票電子化對廠商財稅事務之影響研究,臺灣大學資訊管理組學位論文,台北:臺灣大學。 12.王淑美、溫蓓章、黃仁志、許俊誼(2017)。農業大數據的應用架構規劃-以毛豆外銷產業為例,傳播與發展學報34,58-78。 13.王照穎(2016)。電子發票、公司治理與經營績效之關聯性,成功大學財務金融研究所學位論文,台南:成功大學。 14.王翠華(2015)。102年我國農業及農食鏈統計結果,農政與農情,271,39-42。 15.台灣農業資訊科技發展協會(2017)。106年度食農教育科技研發計畫,研究報告,台北:農業委員會。 16.朱育賢(2020)。臺灣農業與製造業發展人工智慧之經濟影響評估,臺灣大學農業經濟學研究所學位論文,1-107。 17.行政院(2015)。行政院生產力4.0發展方案105-113年,台北:行政院。 18.行政院經濟建設委員會(2011)。「產業有家,家有產業」第二階段座談會成果集,台北:行政院經濟建設委員會。 19.何苔麗、徐慧霞、陳照森(2012)。應用消費者接受模式探討手機應用程式服務之再購意願。電子商務研究,10(3),235-255。 20.余祁暐、張羽萱、李佳玲(2019)。臺灣農企業智慧農業發展現況調查,農業生技產業季刊57, 52-55。 21.余祁暐、廖淑君、張羽萱(2019)。智慧農業大數據發展挑戰與因應對策,農業生技產業季刊57, 34-41。 22.吳亞馨、朱素玥、方文昌(2008)。網路購物信任與科技接受模式之實證研究。資訊管理學報,15(1),123-152。 23.吳智鴻、蔡依錞(2014)。以科技接受模式來探討社群網站Facebook的使用意圖。國立臺灣科技大學人文社會學報,10(1),29-44。 24.呂慧敏(2018。日本形塑未來社會的改革與投資,經濟前瞻178,79-86。 25.李永展(2017)。新農業之可能圖像:智慧農村。經濟前瞻,171,45-49。 26.李秋嬿(2014)。創編農業及農食鏈衛星帳,主計月刊,701,90-93。 27.周永倫(2016)。以電子發票之視覺化資料探勘分析台灣老年消費市場,中央大學企業管理學系學位論文,桃園:中央大學。 28.周君倚、陸洛(2014)。以科技接受模式探討數位學習系統使用態度:以成長需求為調節變項。資訊管理學報,21(1),83-106。 29.林心慧、張雲豪(2009)。以UTAUT為基礎之消費者電子折價劵使用行為之預測模式:直接與干擾效果。中華管理評論國際學報,12(3),1-26。 30.林玉偉、梁朝雲、葉哲愷(2020)。影響青年農民接受物聯網科技的關鍵因素及其效果,農民組織學刊22,1-25。 31.林秀霙、王翠華(2013)。創編農業及農食鏈衛星帳,主計月刊,694,79-83。 32.林昱梅(2017)。大數據時代之食品安全,人文與社會科學簡訊,19(1),47-52。 33.林靖文、謝寶煖、莊馥瑄(2013)。以科技準備度與科技接受模型探討公共圖書館使用者運用數位服務科技之意願。圖書資訊學研究,7(2),81-122。 34.邱祈榮、李俊佑(2018)。千分之四倡議-健康的土壤是氣候變遷及糧食危機的救贖金鑰,林業研究專訊 25(3):68-73。 35.屏東縣政府文化處(2020)。屏東縣各鄉鎮地圖,瀏覽於https://www.cultural.pthg.gov.tw/Son/Library/library05.aspx(accessed on2021.02.05)。 36.洪羽萱(2016)。以大數據分析便利商店蔬食購買行為之研究,中原大學資訊管理研究所學位論文,桃園:中原大學。 37.洪新原、梁定澎、張嘉銘(2005)。科技接受模式之彙總研究。資訊管理學報,12(4),211-220。 38.財政部(2017)。中華民國稅務行業標準分類(第8次修訂版),台北:財政部。 39.財政部(2021)。電子發票智慧好生活平臺,瀏覽於 https://sip.einvoice.nat.gov.tw/ods-main/ODS313E/detail/packageInfo/1D6A792B-47B2-4B78-BE53-9FF39A7D2F11/3 (accessed on2021.02.10) 40.財團法人農業科技研究院(2021)。聯合國永續發展目標的發展計畫,農業科技決策資訊平臺:https://agritech-foresight.atri.org.tw/article/contents/3358。(accessed on 20 May 2021) 41.國家發展委員會(2017)。106年度數位機會調查,研究報告,台北:國家發展委員會。 42.國家發展委員會(2019)。地方創生國家戰略計畫,台北:國家發展委員會。 43.國家發展委員會(2021)。政府資料開放平臺,https://data.gov.tw/datasets/search。 (accessed on 10 May 2021) 44.張純嫣(2016)。因應氣候變遷我國農業之調適策略,農政與農情285,6-9。 45.張基成、顏啟芳(2012)。以擴充的科技接受模式探討行動英語學習之接受度。電子商務學報,14(1),97-120。 46.郭華仁編修(2008)。農業知識與科技促進發展之國際評估報告,http://seed.agron.ntu.edu.tw/publication/iaastd_gsdm_fc_2008.pdf。(accessed on 20 May 2021) 47.陳奕璇(2014)。網路虛擬社群意識對社會行銷效果的探討-以鼓勵民眾使用載具索取電子發票為例. 中山大學公共事務管理研究所學位論文,高雄:中山大學。 48.陳威豪(2010)。電子發票應用於企業對消費者 (B2C) 交易之研究,政治大學資訊管理研究所學位論文,台北:政治大學。 49.陳釗而、陳昇瑋、羅光達、蔡宜展(2018)。利用電子發票資料分析民間消費研究,研究報告,台北:國發會國家發展。 50.陳逸潔(2020)。歐盟《歐洲綠色政綱》下之共同農業政策改革方向,行政院農業委會員主要國家農業政策法規與經濟動態,台北:行政院農業委員會。 51.陳駿季、楊智凱(2017)。推動智慧農業-翻轉臺灣農業,國土及公共治理季刊 5(4),104-111。 52.傅仰止、蘇國賢、吳齊殷、廖培珊、謝淑惠(2018)。台灣社會變遷基本調查計畫第七期第三次調查計畫執行報告,台北:中央研究院調查研究專題中心。 53.森川博之(2019)。數位農業的時代,載於21世紀政策研究所主編,2025農業關鍵字,頁85-106。臺北市:豐年社。 54.黃立(2019)。農業 4.0-以機械手臂為例之成本效益分析研究,中興大學農業經濟與行銷碩士學位學程學位論文,1-43。 55.黃名揚(2018)。智慧農業技術對香蕉生產之成本效益分析- 以無人機應用為例,中興大學,農業經濟與行銷碩士學位學程學位論文,1-48。 56.黃秋蓮、王俊豪、陳右人(2012)。台灣消費者飲茶行為對日本綠茶之知識、 態度、行為之影響,農業推廣學報,29,45-70。 57.黃華山、王怡舜、黃怡菁(2011)。線上拍賣購物者滿意度與忠誠度影響因素之研究。中華管理評論,14(1),1-27。 58.黃鈺茹(2019)。由電子發票資料分析臺灣消費初探,經濟研究,19,45-64。 59.黃德秀、巫凱琳(2017)。FAO農業E化行動案例介紹,行政院農業委會員主要國家農業政策法規與經濟動態,台北:行政院農業委員會。 60.楊欣儒(2016)。探討臺灣農食鏈價值分配之研究,臺灣大學農業經濟學研究所學位論文,台北:臺灣大學。 61.楊智凱、楊舒涵(2016)。農業生產力4.0—以智慧科技邁向臺灣農業新世代,畜產報導,139,3-7。 62.溫憲宏(2019)。智慧化溫室之成本效益分析-以鋐洲生技有機農場溫室為例,逢甲大學國際經營與貿易學系學位論文,1-65。 63.農業委員會(2018)。農家概況及農業勞動力。瀏覽於http://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv2_1_6.html (accessed on2020.06.25)。 64.農業委員會(2018a)。第六屆全國農業會議總結論,台北:農業委員會。 65.農業委員會(2018b)。農家概況及農業勞動力。http://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv2_1_6.html (accessed on 20 Juni 2021)。 66.農業委員會(2020)。新農民培育計畫,台北:農業委員會。 67.農業委員會(2021a)。新農業創新推動方案2.0,台北:農業委員會。 68.農業委員會(2021b)。農業物聯網發展計畫,台北:農業委員會。 69.農業委員會(2021c)。立法院第十屆第一會期業務報告,台北:農業委員會。 70.廖珮妏、余鑑、于俊傑(2012)。應用整合型科技接受模式與創新擴散通用模型於企業導入數位學習之多層次分析。電子商務學報,14(4),657-687。 71.劉一萍(2020)。科技智轉農業:談日本智慧農業的推展。臺灣經濟研究月刊,43(7),31-39。 72.蔡雨芳(2012)。以展望理論探討電子發票使用意圖的科技接受行為,中原大學資訊管理研究所學位論文,桃園:中原大學。 73.蔡達智(2019)。智慧農業資訊管制規範之研究,華岡法粹67,85-139。 74.鄭柏彥、蔡綾容(2017)。韓國智慧農場實況與成功因子分析,行政院農業委會員主要國家農業政策法規與經濟動態,台北:行政院農業委員會。 75.黎萬益(2008)。電子發票促進企業經營效率,研考雙月刊, 32(1), 77-86。 76.賴瑞敏(2016)。以大數據分析便利商店咖啡購買行為之研究,中原大學資訊管理研究所學位論文,桃園:中原大學。 77.簡苙安(2016)。電子發票大數據視覺化分析-以酒的消費為例,中央大學企業管理學系,中央大學企業管理學系學位論文,桃園:中央大學。 78.羅啟宏(1992)。台灣省鄉鎮發展類型之研究,台灣經濟,190,41-67。 79.譚中岳、余祁暐(2021)。我國精準育種科技專家意見與支持度調查,農業生技產業季刊63,32-38。 80.蘇美惠(2017)。農業e化的行動案例介紹,行政院農業委會員主要國家農業政策法規與經濟動態,台北:行政院農業委員會。 英文文獻 1.Alambaigi, A., Ahangari, I. (2015). Technology acceptance model (TAM) as a predictor model for explaining agricultural experts behavior in acceptance of ICT. International Journal of Agricultural Management and Development, 6(2), 235-247. 2.Amin, K., Li, J. (2013). Applying farmer technology acceptance model to understand farmers’ behavioral intention to use ICT based microfinance platform: A comparative analysis between Bangladesh and China. A paper read at the Thirteenth Wuhan International Conference on E-Business. China: Wuhan. 3.Arslan, A., McCarthy, N., Lipper, L., Asfaw, S., Cattaneo, A., Kokwe, M. (2015). Climate smart agriculture? Assessing the adaptation implications in Zambia. Journal of Agricultural Economics, 66(3), 753-780. 4.Au, A. K.-M., Enderwick, P. (2000). A cognitive model on attitude towards technology adoption. Journal of Managerial Psychology, 15(4), 266-282. 5.Balezentis, T., Ribasauskiene, E., Morkunas, M., Volkov, A., Streimikiene, D., Toma, P. (2020). Young farmers’ support under the Common Agricultural Policy and sustainability of rural regions: Evidence from Lithuania. Land Use Policy, 94, 104542. 6.Bellon-Maurel, V., Huyghe, C. (2016). L’innovation technologique dans l’agriculture. Goconomie 80, 159–180. 7.Bir, C., Cummins, A. M., Widmar, N. O., Wolf, C. A. (2018). Willingness to pay estimates informing agribusiness decision making: A cautionary tale. International Food and Agribusiness Management Review, 21(7), 865-882. 8.Blok, V., Gremmen, B. (2018). Agricultural technologies as living machines: Toward a biomimetic conceptualization of smart farming technologies. Ethics Policy and Environment. 21, 246–263. 9.Burch, D., Lawrence, G. (2009). Towards a third food regime: behind the transformation. Agric. Human Values 26, 267–279. 10.Burton-Jones, A., Hubona, G. S. (2006). The mediation of external variables in the technology acceptance model. Information Management, 43(6), 706-717. 11.Castella, J. C. et al. (2006). Connecting marginal rice farmers to agricultural knowledge and information systems in Vietnam uplands. The Journal of Agricultural Education and Extension, 12(2), 109-125. 12.Cheung, C. K., Chan, C. M. (2000). Learning to work safely with reference to a social-cognitive model. Social Behavior and Personality: An International Journal, 28 (3), 293-308. 13.Chuang, J. H., Wang, J. H., Liang, C. (2020). Implementation of Internet of Things depends on intention: Young farmers’ willingness to accept innovative technology. International Food and Agribusiness Management Review, 23, 253-265. 14.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. 15.Devaux, A., Torero, M., Donovan, J., Horton, D. (2018). Agricultural innovation and inclusive value-chain development: A review. Journal of Agribusiness in Developing and Emerging Economies, 8(1), 99-123. 16.Doss, C. R., Morris, M. L. (2001). How does gender affect the adoption of agricultural innovations? The case of improved maize technology in Ghana. Agricultural Economics, 25(1), 27-39. 17.Flett, R., Alpass, F. M., Humphries, S., Massey, C., Morriss, S., Long, N. (2004). The technology acceptance model and use of technology in New Zealand dairy farming. Agricultural Systems, 80(2), 199-211. 18.Fukuyama, M. (2018). Society 5.0: Aiming for a new human-centered society. Japan Spotlight, 27, 47-50. 19.Goap, A., Sharma, D., Shukla, A. K., Krishna, C. R. (2018). An IoT based smart irrigation management system using machine learning and open source technologies. Computers and Electronics in Agriculture, 155, 41-49. 20.Grant, T., Clark, U., Reershemius, G., Pollard, D., Hayes, S., Plappert, G. (2017). Quantitative research methods for linguists: A questions and answers approach for students. London: Routledge. 21.Hsiao, C.-H., Yang, C. (2011). The intellectual development of the technology acceptance model: A co-citation analysis. International Journal of Information Management, 31(2), 128-136. 22.Ingram, J. S. I., Gregory, P. J., Izac, A. M. (2008). The role of agronomic research in climate change and food security policy. Agriculture, ecosystems environment, 126(1-2), 4-12. 23.Jouanjean, M.-A. (2019). Digital Opportunities for Trade in the Agriculture and Food Sectors. OECD Food, Agriculture and Fisheries Papers, No. 122. OECD Publishing, Paris. 24.Kabbiri, R., Dora, M., Kumar, V., Elepu, G., Gellynck, X. (2018). Mobile phone adoption in agri-food sector: Are farmers in Sub-Saharan Africa connected? Technological Forecasting Social Change, 131, 253-261. 25.Kaloxylos, A., Eigenmann, R., Teye, F., et al., (2012). Farm management systems and the future Internet era. Computers and Electronics in Agriculture, 89, 130-144. 26.Kamrath, C., Rajendran, S., Nenguwo, N., Afari-Sefa, V., Broring, S. (2018). Adoption behavior of market traders: an analysis based on Technology Acceptance Model and Theory of Planned Behavior. International Food and Agribusiness Management Review, 21, 771-790. 27.Karlsson, L., Naess, L. O., Nightingale, A., Thompson, J. (2018). ‘Triple wins’ or ‘triple faults’? Analysing the equity implications of policy discourses on climate-smart agriculture (CSA). The journal of peasant studies, 45(1), 150-174. 28.Keogh, M., Henry, M. (2016). The Implications of Digital Agriculture and Big Data for Australian Agriculture. Australian Farm Institute, Sydney, Australia. 29.Khatri-Chhetri, A., Pant, A., Aggarwal, P. K., Vasireddy, V. V., Yadav, A. (2019). Stakeholders prioritization of climate-smart agriculture interventions: Evaluation of a framework. Agricultural systems, 174, 23-31. 30.Kitchen, N. R. (2008). Emerging technologies for real-time and integrated agriculture decisions. Computers and Electronics in Agriculture, 61, 1-3. 31.Klerkx, L., Jakku, E., Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen Journal of Life Sciences, 90, 100315. 32.Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. (2020). Adoption of climate-smart agriculture technologies in Tanzania. Frontier Sustainable Food System, 4, 55. 33.Lamb, D. W., Frazier, P., Adams, P. (2008). Improving pathways to adoption: Putting the right P’s in precision agriculture. Computers and Electronics in Agriculture, 61, 4-9. 34.Legris, P., Ingham, J., Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information and Management, 40(3), 191-204. 35.Leonard, E., Rainbow, R., Trindall, J., Baker, I., Barry, S., Darragh, S., Darnell, R., George, A., Heath, R., Jakku, E., Laurie, A., Lamb, D., Llewellyn, R., Perrett, E., Sanderson, J., Skinner, A., Stollery, T., Wiseman, W., Wood, G., Zhang, A. (2017). Accelerating Precision Agriculture to Decision Agriculture: Enabling Digital Agriculture in Australia. Cotton Research and Development Corporation. 36.Li, M., Chung, S. O. (2015). Precision agriculture. Computers and Electronics in Agriculture, 112, 1-9. 37.Lindgren, D. (2015). How to Make KAP* Surveys Work? (*Knowledge, Attitude, and Practice). Retrieved from: http://www.rapid-asia.com/blog/how-to-make-kap-surveys-work-knowledge-attitude-and-practice/ (accessed on 25 July 2020). 38.Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature climate change, 4(12), 1068-1072. 39.Long, T. B., Blok, V., Coninx, I. (2016). Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy. Journal of cleaner production, 112, 9-21. 40.Long, T. B., Blok, V., Poldner, K. (2016). Business models for maximising the diffusion of technological innovations for climate-smart agriculture. International Food and Agribusiness Management Review, 20, 5-23. 41.Long, T. B., Blok, V., Poldner, K. (2017). Business models for maximising the diffusion of technological innovations for climate-smart agriculture. International Food and Agribusiness Management Review, 20(2), 5-23. 42.Makate, C. (2019). Effective scaling of climate smart agriculture innovations in African smallholder agriculture: A review of approaches, policy and institutional strategy needs. Environmental science policy, 96, 37-51. 43.Mark, T. B., Griffin, T. W., Whitacre, B. E. (2016). The role of wireless broadband connectivity on ‘big data’ and the agricultural industry in the United States and Australia. International Food and Agribusiness Management Review, 19(A), 43-56. 44.Mayer-Schönberger, Viktor and Cukier, Kenneth(2013)。Big Data: A Revolution that Will Transform How We Live, Work, and Think,林俊宏譯,台北:遠見天下文化。 45.Mazon-Olivo, B., Hernández-Rojas, D., Maza-Salinas, J., Pan, A. (2018). Rules engine and complex event processor in the context of internet of things for precision agriculture. Computers and Electronics in Agriculture, 154, 347-360. 46.Mazzucato, M. (2015). The entrepreneurial state : debunking public vs. private sector myths / Mariana Mazzucato. (Revised edition.). PublicAffairs. 47.McBratney, A., Whelan, B., Ancev, T., Bouma, J. (2005). Future directions of precision agriculture. Precision agriculture, 6(1), 7-23. 48.Mulder, M., Weigel T., Collins K. (2006). The concept of competence concept in the development of vocational education and training in selected EU member states: A critical analysis. Journal of Vocational Education and Training, 59(1), 65-85. 49.Myles, M. Smith, K. A. (2011). Knowledge / Importance Matrix: Article on method for prioritizing design development tasks. Retrieved Jane 15, 2020, from http://www.uxmatters.com/mt/archives/2011/06/knowledge-importance-matrix-for-wiki-project-coordination.php 50.Ndiritu, S. W., Kassie, M., Shiferaw, B. (2014). Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy, 49(1), 117-127. 51.OECD (2018). New technologies and digitalisation are transforming agriculture and offering new opportunities to improve policy, OECD Publishing, Paris, https://www.oecd.org/agriculture/topics/technology-and-digital-agriculture/ 52.OECD (2019). Digital Opportunities for Better Agricultural Policies, OECD Publishing, Paris, https://doi.org/10.1787/571a0812-en. 53.Pagliacci, F., Defrancesco, E., Mozzato, D., Bortolini, L., Pezzuolo, A., Pirotti, F., ... Gatto, P. (2020). Drivers of farmers' adoption and continuation of climate-smart agricultural practices. A study from northeastern Italy. Science of the Total Environment, 710, 136345. 54.Pérez, R. D. G., Sendra, M. J. M., López-i-Gelats, F. (2020). Strategies and drivers determining the incorporation of young farmers into the livestock sector. Journal of Rural Studies, 78, 131-148. 55.Pivoto, D., Barham, B., Dabdab, P., Zhang, D., Talamin, E. (2019). Factors influencing the adoption of smart farming by Brazilian grain farmers. International Food and Agribusiness Management Review, 22, 571-588. 56.Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Corte, V. F. D., de Vargas Morese, G. (2018). Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, 5(1), 21-32. 57.Protopop, I., Shanoyan, A. (2016). Big data and smallholder farmers: Big data applications in the agri-food supply chain in developing countries. International Food and Agribusiness Management Review, 19(A), 173-190. 58.Ray, P. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9(4), 395-420. 59.Rogers, E.M (1962). Diffusion of Innovation, N.Y., The Free Press. 60.Roopaei, M., Rad, P., Choo, K.-K. R. (2017). Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Computing, 4(1), 10-15. 61.Rose, D.C., Chilvers, J. (2018). Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Frontiers in Sustainable Food Systems, pp. 87. 62.Rosenstock, T. S., Lamanna, C., Chesterman, S., Bell, P., Arslan, A., Richards, M., ... Zhou, W. (2016). The scientific basis of climate-smart agriculture: A systematic review protocol; Working Paper No. 138; Consultative Group on International Agricultural Research (CGIAR): Montpellier, France. 63.Saj, S., Torquebiau, E., Hainzelin, E., Pages, J., Maraux, F. (2017). The way forward: An agroecological perspective for Climate-Smart Agriculture. Agriculture, Ecosystems Environment, 250, 20-24. 64.Scholz, R., Bartelsman, E., Diefenbach, S., Franke, L., Grunwald, A., Helbing, D., Hill, R., Hilty, L., Höjer, M., Klauser, S., Montag, C., Parycek, P., Prote, J., Renn, O., Reichel, A., Schuh, G., Steiner, G., Viale Pereira, G. (2018). Unintended side effects of the digital transition: European scientists’ messages from a proposition-based expert round table. Sustainability. 10 (6), 2001. 65.Shin, D. H. (2007). User acceptance of mobile Internet: Implication for convergence technologies. Interacting with Computers, 19(4), 472-483. 66.Smart Farming Thematic Network (Smart-AKIS) (2017). What is Smart Farming. Retrieved January 20, 2019, from https://www.smart-akis.com/index.php/network/what-is-smart-farming/ (accessed on 15 May 2020). 67.Soltani-Fesaghandis, G., Pooya, A. (2018). Design of an artificial intelligence system for predicting success of new product development and selecting proper market-product strategy in the food industry. International Food and Agribusiness Management Review, 21(7), 847-864. 68.Sonka, S. (2014). Big data and the ag sector: More than lots of numbers. International Food and Agribusiness Management Review, 17(1), 1-20. 69.Sykuta, M. E. (2016). Big data in agriculture: Property rights, privacy and competition in ag data services. International Food and Agribusiness Management Review, 19(A), 57-74. 70.Ta, A., Prybutok, V. (2016). A mindful product acceptance model. Journal of Decision Systems, 27(1), 19-36. 71.Taylor, M. (2018). Climate-smart agriculture: what is it good for?. The Journal of Peasant Studies, 45(1), 89-107. 72.Trendov, N.M., Varas, S., Zenf, M. (2019). Digital Technologies in Agriculture and Rural Areas: Status Report. Food and Agricultural Organization of the United Nations, Rome. 73.Tsai, H.-T., Hong, J,-T., Yeh, S.-P., Wu, T.-J. (2014). Consumers’ acceptance model for Taiwan agriculture and food traceability system. Anthropologist, 17(3), 845-856. 74.Tubtiang, A., Pipatpanuvittaya, S. (2015). A study of factors that affect attitude toward deploying smart-farm technologies in Tanud subdistrict, Damnoen Saduak district in Ratchaburi province. Journal of Food Science and Agricultural Technology, 1(1), 144-148. 75.Turel, O., Serenko, A., Bontis, N. (2007). User acceptance of wireless short messaging services: Deconstructing perceived value. Information Management, 44(1), 63-73. 76.Vellidis, G., Tucker, M., Perry, C., Kvien, C., Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 112, 44-50. 77.Walter, A., Finger, R., Huber, R., Buchmann, N. (2017). Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148-6150. 78.Wang, J. H., Huang, C. L., Knerr, B. (2010). Knowledge, attitudes, and practices of straybirds agricultural trainees in Taiwan. Social Behavior and Personality: an international journal, 38(6), 795-804. 79.Wang, J.H. (2015). Recruiting Young Farmers to Join Small-Scale Farming in EU: A Structural Policy Perspective. Journal of Agricultural Association of Taiwan, 16, 1–17. 80.Wang, Y. S., Lin, H. H., Luarn, P. (2006). Predicting consumer intention to use mobile service. Information Systems Journal, 16(2), 157-179. 81.Wolf, S., Just, D., Zilberman, D., 2001. Between data and decisions: the organization of agricultural economic information systems. Research Policy. 30, 121–141. 82.Wolf, S.A., Buttel, F.H., 1996. The political economy of precision farming. American Journal of Agricultural Economics. 78, 1269–1274. 83.Wolf, S.A., Wood, S.D., 1997. Precision farming: environmental legitimation, commodification of information, and industrial coordination. Rural Sociology. 62, 180–206. 84.Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural Systems, 153, 69-80. 85.Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M. J. (2017). Big data in smart farming: A review. Agricultural System, 153, 69-80. 86.Wolters, S., Balafoutis, T., Fountas, S., van Evert, F. (2017). Deliverable 1.2 Research project results on Smart Farming Technology. Retrieved from www. smart-akis.com. (accessed on 15 June 2020). 87.World Bank (2017). ICT in Agriculture: Connecting Smallholders to Knowledge, Networks, and Institutions. World Bank Group, Washington, D.C. 88.World Bank (2019). Future of Food - Harnessing Digital Technologies to Improve Food System Outcomes. World Bank, Washington D.C. 89.Yang, C.-K., Shih, Y.-Y, Yang, S.-H. (2016). Moving towards Agricultural 4.0 in Taiwan with Smart Technology. Retrieved from http://eng.coa.gov.tw/ ws.php?id=2505331 (accessed on 10 June 2020). 90.Yoon, C., Kim, S. (2007). Convenience and TAM in a ubiquitous computing environment: The case of wireless LAN. Electronic Commerce Research and Applications, 6(1), 102-112. 91.Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1), 36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79980 | - |
| dc.description.abstract | 我國自2015年推動「農業生產力4.0計畫」後,正式揭開農業部門邁向智慧化發展的序幕。世界各國應用智慧科技來因應氣候變遷、農村人口老化、農業勞動力不足、自然資源匱乏,及糧食安全等挑戰,已成為全球農業發展的趨勢。有鑑於國內外智慧農業的社會科學研究成果,文獻數量相對有限,故本博士論文旨在利用量化分析方法,探討智慧科技應用於農業生產與消費實務的相關議題,期望實證研究成果能俾助於我國智慧農業發展。 本博士論文由三篇實證研究所構成,第一篇實證研究論文以KAP理論為基礎,一般農民為調查對象,探討其對各種智慧農業科技的知識、態度、採用行為,及三者概念間的關聯性。 第二篇實證研究論文則進一步針對青年農民對於農業物聯網的創新採用意願,及分析相關其影響因素。前兩篇實證分析的研究焦點,都聚焦在智慧農業生產面,故第三篇實證研究論文則關注智慧農業消費面的量化分析,從農食產業的總體消費觀點,使用電子發票的大數據,探索性分析農食產品消費的時間趨勢、空間分佈,及城鄉差異的消費情形。 綜合本論文三篇實證研究的潛在學術貢獻,除可填補國內智慧農業生產與消費實務的知識缺口之外,同時也可在智慧農業的社會科學研究上,接軌國際學術發展的步伐,在農業科技採用與調適、智慧農業知識與創新,及數位農業經濟與管理等三個主題群,提供臺灣智慧農業的發展經驗和實證研究成果。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:19:29Z (GMT). No. of bitstreams: 1 U0001-2107202117385700.pdf: 7878522 bytes, checksum: 42149b9435a7f40f5279598e4b8b9583 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目 錄 論文口試委員會審定書 i 謝誌 ii 中文摘要 iii 英文摘要 iv 第一章 緒論 1 第一節 研究動機與目的 1 第二節 智慧農業的社會科學研究現況 17 第三節 研究架構 28 第二章 農民對智慧農業科技的知識、態度、採用行為之研究 31 第一節 前言 33 第二節 文獻回顧 35 第三節 研究設計與方法 42 第四節 分析結果與討論 45 第五節 本章小結 53 第三章 青年農民創新科技採用意願之研究-以農業物聯網為例 55 第一節 前言 57 第二節 文獻回顧 61 第三節 研究設計與方法 67 第四節 資料分析結果 68 第五節 研究討論 72 第六節 本章小結 75 第四章 農食關聯產業消費大數據分析之探索性研究 77 第一節 前言 79 第二節 文獻回顧 83 第三節 研究設計與方法 93 第四節 分析結果與討論 99 第五節 本章小結 130 第五章 綜合結論與建議 139 第一節 綜合研究結論 140 第二節 綜合研究建議 142 參考文獻 145 中文文獻 145 英文文獻 151 附錄一、「智慧農業4.0職能基準課程發展計畫」學員問卷調查表 159 附錄二、「農民對物聯網系統之接受意願」問卷 163 附錄三、臺灣各鄉鎮市區電子發票開立情形 167 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大數據分析 | zh_TW |
| dc.subject | 智慧農業 | zh_TW |
| dc.subject | 青年農民 | zh_TW |
| dc.subject | 創新採用行為 | zh_TW |
| dc.subject | 知識-態度-行為模式 | zh_TW |
| dc.subject | 科技接受模型 | zh_TW |
| dc.subject | 農業物聯網 | zh_TW |
| dc.subject | 電子發票 | zh_TW |
| dc.subject | Smart agriculture | en |
| dc.subject | Big data analysis | en |
| dc.subject | Electronic invoice | en |
| dc.subject | IoT in agriculture | en |
| dc.subject | Technology Acceptance Model (TAM) | en |
| dc.subject | KAP Model | en |
| dc.subject | Innovation adoption | en |
| dc.subject | Young farmers | en |
| dc.title | 智慧科技應用於農業產消實務之量化分析 | zh_TW |
| dc.title | Quantitative Analysis of Smart Technologies Applied in Agricultural Production and Consumption Practices | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡必焜(Hsin-Tsai Liu),張宏浩(Chih-Yang Tseng),廖培安,彭立沛 | |
| dc.subject.keyword | 智慧農業,青年農民,創新採用行為,知識-態度-行為模式,科技接受模型,農業物聯網,電子發票,大數據分析, | zh_TW |
| dc.subject.keyword | Smart agriculture,Young farmers,Innovation adoption,KAP Model,Technology Acceptance Model (TAM),IoT in agriculture,Electronic invoice,Big data analysis, | en |
| dc.relation.page | 174 | |
| dc.identifier.doi | 10.6342/NTU202101639 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業傳播暨發展學研究所 | zh_TW |
| 顯示於系所單位: | 生物產業傳播暨發展學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2107202117385700.pdf | 7.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
