Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬(Kung-Bin Sung)
dc.contributor.authorTzu-Chia Kaoen
dc.contributor.author高子佳zh_TW
dc.date.accessioned2022-11-23T09:19:18Z-
dc.date.available2022-08-01
dc.date.available2022-11-23T09:19:18Z-
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-22
dc.identifier.citation1. Perrey, S., Non-invasive NIR spectroscopy of human brain function during exercise. Methods, 2008. 45(4): p. 289-99. 2. Schelkanova, I. and V. Toronov, Optimal quantitation of the cerebral hemodynamic response in functional near-infrared spectroscopy. Optics Express, 2010. 18(18): p. 19386-19395. 3. Metzger, F.G., et al., Brain activation in frontotemporal and Alzheimer’s dementia: a functional near-infrared spectroscopy study. Alzheimer's Research Therapy, 2016. 8(1): p. 56. 4. Li, R., et al., Early Detection of Alzheimer's Disease Using Non-invasive Near-Infrared Spectroscopy. Frontiers in aging neuroscience, 2018. 10: p. 366-366. 5. Huo, C., et al., Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: A functional near-infrared spectroscopy study. Scientific Reports, 2019. 9(1): p. 6226. 6. Yang, M., et al., A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions. 2019. 10(58). 7. Petrantonakis, P.C. and I. Kompatsiaris, Single-Trial NIRS Data Classification for Brain–Computer Interfaces Using Graph Signal Processing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018. 26(9): p. 1700-1709. 8. Shin, J., et al., Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses. Sensors, 2018. 18(6): p. 1827. 9. Shin, J., J. Kwon, and C.-H. Im, A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State. Frontiers in Neuroinformatics, 2018. 12(5). 10. Barrett, D.W. and F. Gonzalez-Lima, Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience, 2013. 230: p. 13-23. 11. Wang, X., et al., Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. 2017. 37(12): p. 3789-3802. 12. Kocsis, L., P. Herman, and A. Eke, The modified Beer–Lambert law revisited. Physics in Medicine and Biology, 2006. 51(5): p. N91-N98. 13. Michael R. Hamblin, C.F., Ying-Ying Huang M.D., Lucas Freitas de Freitas, James D. Carroll, Low-Level Light Therapy: Photobiomodulation. 2018. 14. Bashkatov, A.N., et al., Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005. 38(15): p. 2543-2555. 15. BASHKATOV, A.N., E.A. GENINA, and V.V. TUCHIN, OPTICAL PROPERTIES OF SKIN, SUBCUTANEOUS, AND MUSCLE TISSUES: A REVIEW. 2011. 04(01): p. 9-38. 16. Okui, N. and E. Okada, Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin. J Biomed Opt, 2005. 10(1): p. 11015. 17. Simpson, C.R., et al., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine Biology, 1998. 43(9): p. 2465. 18. Chan, E.K., et al., Effects of compression on soft tissue optical properties. IEEE Journal of Selected Topics in Quantum Electronics, 1996. 2(4): p. 943-950. 19. Choi, J., et al., Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt, 2004. 9(1): p. 221-9. 20. Bashkatov, A.N., et al. Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. in Saratov Fall Meeting 2005. 2006. SPIE. 21. Bevilacqua, F., et al., In vivo local determination of tissue optical properties: applications to human brain. Applied Optics, 1999. 38(22): p. 4939-4950. 22. Firbank, M., et al., Measurement of the optical properties of the skull in the wavelength range 650-950 nm. Phys Med Biol, 1993. 38(4): p. 503-10. 23. Okada, E. and D.T. Delpy, Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Applied Optics, 2003. 42(16): p. 2906-2914. 24. Farina, A., et al., In-vivo multilaboratory investigation of the optical properties of the human head. Biomedical Optics Express, 2015. 6(7): p. 2609-2623. 25. Yaroslavsky, A.N., et al., Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine Biology, 2002. 47(12): p. 2059. 26. van der Zee, P., M. Essenpreis, and D.T. Delpy. Optical properties of brain tissue. in OE/LASE'93: Optics, Electro-Optics, and Laser Applications in Scienceand Engineering. 1993. SPIE. 27. Gebhart, S.C., W.C. Lin, and A. Mahadevan-Jansen, In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Physics in Medicine and Biology, 2006. 51(8): p. 2011-2027. 28. Scott A. Prahl, M.J.C.v.G., and Ashley J. Welch, Determining the optical properties of turbid media by using the adding–doubling method. Applied Optics, 1993. 32(4): p. 559-568. 29. Arslan, H. and B. Pehlivanoz, Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues. Chinese Optics Letters, 2021. 19(1): p. 011701. 30. Selb, J., D.K. Joseph, and D.A. Boas, Time-gated optical system for depth-resolved functional brain imaging. J Biomed Opt, 2006. 11(4): p. 044008. 31. McBride, T.O., et al., A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. 2001. 72(3): p. 1817-1824. 32. Yeganeh, H.Z., et al., Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations. Biomedical optics express, 2012. 3(11): p. 2761-2770. 33. Veesa, J.D. and H. Dehghani, Hyper-spectral Recovery of Cerebral and Extra-Cerebral Tissue Properties Using Continuous Wave Near-Infrared Spectroscopic Data. 2019. 9(14): p. 2836. 34. Alerstam, E., S. Andersson-Engels, and T. Svensson, White Monte Carlo for time-resolved photon migration. Journal of Biomedical Optics, 2008. 13(4): p. 041304. 35. Flock, S.T., et al., Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Transactions on Biomedical Engineering, 1989. 36(12): p. 1162-1168. 36. Chen, Y.-W. and S.-H. Tseng, Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties. Biomedical Optics Express, 2015. 6(3): p. 747-760. 37. Ivančič, M., et al., Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks. Optics Letters, 2018. 43(12): p. 2901-2904. 38. Zelinskyi, Y., et al., Fast and accurate Monte Carlo simulations of subdiffusive spatially resolved reflectance for a realistic optical fiber probe tip model aided by a deep neural network. Biomedical Optics Express, 2020. 11(7): p. 3875-3889. 39. Xiang, W., et al., A Monte Carlo based lookup table for spectrum analysis of turbid media in the reflectance probe regime. Quantum Electronics, 2014. 44(7): p. 641-645. 40. Bender, J.E., et al., A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo. IEEE transactions on bio-medical engineering, 2009. 56(4): p. 960-968. 41. Palmer, G.M. and N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl Opt, 2006. 45(5): p. 1062-71. 42. Karlsson, H., et al., Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms. Optics Express, 2012. 20(11): p. 12233-12246. 43. Liu, Q. and N. Ramanujam. Sequential Estimation of Optical Properties of a Two-Layered Epithelial Tissue Model from Depth-Sensitive Ultraviolet-Visible Diffuse Reflectance Spectra. in Biomedical Optics. 2006. Fort Lauderdale, Florida: Optical Society of America. 44. Tseng, T.-Y., et al., Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy. Biomedical optics express, 2011. 2(4): p. 901-914. 45. Sharma, M., et al., Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy. Biomedical Optics Express, 2014. 5(1): p. 40-53. 46. Fredriksson, I., M. Larsson, and T. Strömberg, Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy. 2012. 17 %J Journal of Biomedical Optics(4): p. 047004. 47. Wang, C.-Y., et al., Validation of an Inverse Fitting Method of Diffuse Reflectance Spectroscopy to Quantify Multi-Layered Skin Optical Properties. Photonics, 2019. 6(2): p. 61. 48. Rajaram, N., T. Nguyen, and J. Tunnell, Lookup table–based inverse model for determining optical properties of turbid media. 2008. 13 %J Journal of Biomedical Optics(5): p. 050501. 49. Nichols, B., N. Rajaram, and J. Tunnell, Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy. 2012. 17 %J Journal of Biomedical Optics(5): p. 057001. 50. 林廷軒, 以近紅外光譜系統定量仿體及人體頭部組織光學參數. 2018. 51. Wilson, B.C. and G. Adam, A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys, 1983. 10(6): p. 824-30. 52. Wang, L., S.L. Jacques, and L. Zheng, MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995. 47(2): p. 131-146. 53. Josh Silverman, J.S. Inverse Transform Sampling. July 25, 2020]; Available from: https://brilliant.org/wiki/inverse-transform-sampling/. 54. Binzoni, T., et al., The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics. Physics in medicine and biology, 2006. 51: p. N313-22. 55. Fantini, S., M.A. Franceschini, and E. Gratton, Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation. Journal of the Optical Society of America B, 1994. 11(10): p. 2128-2138. 56. Fang, Q. and D.A. Boas, Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Optics express, 2009. 17(22): p. 20178-20190. 57. Alerstam, E., T. Svensson, and S. Andersson-Engels, Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Journal of Biomedical Optics, 2008. 13(6): p. 060504. 58. Sassaroli, A. and F. Martelli, Equivalence of four Monte Carlo methods for photon migration in turbid media. Journal of the Optical Society of America. A, Optics, image science, and vision, 2012. 29: p. 2110-7. 59. McKinley, S. and M.J.C.o.t.R. Levine, Cubic spline interpolation. 1998. 45(1): p. 1049-1060. 60. Penny, W.D., et al., Statistical parametric mapping: the analysis of functional brain images. 2011: Elsevier. 61. Kurihara, K., et al., The influence of frontal sinus in brain activation measurements by near-infrared spectroscopy analyzed by realistic head models. Biomed Opt Express, 2012. 3(9): p. 2121-30. 62. Jurcak, V., D. Tsuzuki, and I. Dan, 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage, 2007. 34: p. 1600-11. 63. Giacometti, P., K.L. Perdue, and S.G. Diamond, Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain. Journal of Neuroscience Methods, 2014. 229: p. 84-96. 64. Jacques, S.L. and D.J. McAuliffe, The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem Photobiol, 1991. 53(6): p. 769-75. 65. Sekar, S.K., et al., Diffuse optical characterization of collagen absorption from 500 to 1700 nm. J Biomed Opt, 2017. 22(1): p. 15006. 66. Kou, L., D. Labrie, and P. Chylek, Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Applied Optics, 1993. 32(19): p. 3531-3540. 67. Nachabé, R., et al., Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples. Biomedical optics express, 2011. 2: p. 600-14. 68. Hutchinson, M.H., et al., Optical Properties of Polylactides. Journal of Polymers and the Environment, 2006. 14(2): p. 119-124. 69. Brigadoi, S. and R.J. Cooper, How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics, 2015. 2(2): p. 025005. 70. Schneider, F., et al., Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sensors and Actuators A: Physical, 2009. 151(2): p. 95-99. 71. Ivančič, M., et al., Virtually increased acceptance angle for efficient estimation of spatially resolved reflectance in the subdiffusive regime: a Monte Carlo study. Biomedical Optics Express, 2017. 8(11): p. 4872-4886. 72. Ferrari, M. and V. Quaresima, A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 2012. 63(2): p. 921-935. 73. Tak, S. and J.C. Ye, Statistical analysis of fNIRS data: A comprehensive review. NeuroImage, 2014. 85: p. 72-91. 74. Hallacoglu, B., A. Sassaroli, and S. Fantini, Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue. PLOS ONE, 2013. 8(5): p. e64095. 75. Binzoni, T., et al., Light transport in tissue by 3D Monte Carlo: Influence of boundary voxelization. Computer Methods and Programs in Biomedicine, 2008. 89(1): p. 14-23. 76. Tran, A.P., S. Yan, and Q. Fang, Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models. Neurophotonics, 2020. 7(1): p. 015008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79976-
dc.description.abstract本研究目的為定量活體受試者的頭部光學參數,以非侵入式的連續波近紅外漫反射光譜系統量測受試者的活體光譜,並且以數值模型進行光譜擬合,定量得到受試者右前額的頭皮、頭骨、灰質層的吸收係數與散射係數,可用於分析功能性近紅外光譜量測資料與模擬經顱紅外雷射刺激的能量分布等。 為得到穩定的活體寬頻近紅外光譜,本研究以鹵素燈作為光源並以光譜儀作為偵測儀器,以光纖導光作為光源與多個距離在0.8 cm至4.5 cm之間的偵測器,並且自製弧形探頭以穩定貼附受試者右前額,針對不同偵測器使用不同曝光時間使信號足夠穩定,並且進行多次測量確保量得穩定、具代表性的光譜。量測光譜經過校正仿體進行校正,可得到可用波常在700 nm至900 nm的活體光譜。 在數值模型上,本研究將受試者的核磁共振影像分割為頭皮、頭骨、腦脊髓液、灰質、白質與額竇共六種組織,並轉換為可供蒙地卡羅光學模擬的三維模型。為加快模擬速度,本研究使用大數值孔徑模擬漫反射光譜,經由迴歸模型轉換為與光纖相符的數值孔徑;針對每位受試者以尋找表配合白蒙地卡羅法產生大量訓練資料以訓練類神經網路,所得到的類神經網路可取代蒙地卡羅法,將輸入的光學參數快速計算成漫反射模擬光譜。 將活體光譜作為擬合目標,使用遞迴式曲線擬合調整組織模型的光學參數,使模擬光譜最接近活體光譜,從而得到組織光學參數。本研究共定量五位健康受試者的光學參數,五位受試者的光學參數差異大於因活體量測誤差造成的光學參數誤差,且大多在文獻參數的合理範圍之內。使用擬合得到的光學參數模擬灰質路徑長與雷射刺激能量分布,可發現結果與使用文獻值有顯著差異,可見本方法有其重要性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:19:18Z (GMT). No. of bitstreams: 1
U0001-2207202115403700.pdf: 17989019 bytes, checksum: 5a88b6e412faaf09b1f115d33f412f7e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract v 圖目錄 ix 表目錄 xiv 第1章. 緒論 1 1.1. 前言 1 1.2. 研究動機 2 1.3. 文獻回顧 4 1.3.1. 光學參數 4 1.3.2. 以NIRS測量光學參數 9 第2章. 原理 11 2.1. 近紅外漫反射光譜 11 2.2. 曲線擬合 15 2.2.1. 曲線擬合基本原理 15 2.2.2. 疊代式曲線擬合於本研究中的應用 18 2.3. 蒙地卡羅法 18 2.3.1. 蒙地卡羅法原理 18 2.3.2. 蒙地卡羅法於本研究中的應用 32 2.4. 白蒙地卡羅法 33 2.5. 尋找表 34 2.5.1. 尋找表介紹 34 2.5.2. 尋找表於本研究中的應用 36 2.6. 人工神經網路 37 2.6.1. 人工神經網路介紹 37 2.6.2. 人工神經網路於本研究中的應用 40 第3章. 研究方法 41 3.1. 模擬模型建立 42 3.1.1. 活體大腦模型 42 3.1.2. 仿體模型 46 3.2. 靈敏度分析 49 3.2.1. 不同SDS對各層組織的靈敏度 49 3.2.2. 選取適合本研究的SDS 54 3.3. 硬體與實驗 56 3.3.1. 硬體架構 56 3.3.2. 漫反射光譜量測 62 3.3.3. 校正結果 72 3.4. 順向模型建立 75 3.4.1. 使用大數值孔徑模擬 76 3.4.2. 建立尋找表 81 3.4.3. 建立人工神經網路 85 3.5. 曲線擬合 91 3.5.1. 擬合參數 91 3.5.2. 擬合工具 92 3.5.3. 進行擬合 93 第4章. 研究結果與討論 95 4.1. 誤差分析 95 4.1.1. 擬合理論誤差 95 4.1.2. 系統雜訊 101 4.1.3. 活體量測信號的變動 106 4.1.4. 影響最佳化因素 116 4.2. 初步擬合結果 118 4.2.1. 選擇適合的SDS組合 118 4.2.2. 有無多重解 121 4.3. 最終擬合結果 128 4.3.1. 擬合光譜結果 128 4.3.2. 擬合光學參數結果 132 4.4. 於應用之效果 134 4.4.1. 路徑長模擬結果 137 4.4.2. TILS能量模擬結果 138 4.5. 實際應用可行性 141 第5章. 結論與未來展望 142 5.1. 結論 142 5.1.1. 順向模型建立 143 5.1.2. 定量參數誤差 143 5.1.3. 活體實驗 143 5.2. 未來展望 144 5.2.1. 縮小參數誤差 144 5.2.2. 減少模型與活體差異 144 5.2.3. 加速建立模型 145 參考文獻 146
dc.language.isozh-TW
dc.subject頭部光學參數zh_TW
dc.subject漫反射光譜zh_TW
dc.subject近紅外光譜zh_TW
dc.subject蒙地卡羅模擬zh_TW
dc.subject尋找表zh_TW
dc.subject類神經網路zh_TW
dc.subject光譜擬合zh_TW
dc.subjectSpectrum fittingen
dc.subjectHead optical parametersen
dc.subjectDiffusion reflection spectrum (DRS)en
dc.subjectNear-infrared spectroscopy (NIRS)en
dc.subjectMonte Carlo simulationen
dc.subjectLookup tableen
dc.subjectArtificial neural networksen
dc.title以連續波近紅外光譜與三維模型定量人體腦部光學參數zh_TW
dc.titleQuantify Optical Properties in Human Brain Using Continuous Wave Near-Infrared Spectrum and Three-Dimensional Modelen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-6204-3979
dc.contributor.advisor-orcid宋孔彬(0000-0002-7253-1332)
dc.contributor.oralexamcommittee盧家鋒(Hsin-Tsai Liu),曾雪峰(Chih-Yang Tseng)
dc.subject.keyword漫反射光譜,近紅外光譜,蒙地卡羅模擬,尋找表,類神經網路,光譜擬合,頭部光學參數,zh_TW
dc.subject.keywordDiffusion reflection spectrum (DRS),Near-infrared spectroscopy (NIRS),Monte Carlo simulation,Lookup table,Artificial neural networks,Spectrum fitting,Head optical parameters,en
dc.relation.page151
dc.identifier.doi10.6342/NTU202101665
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-2207202115403700.pdf17.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved