Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏安祺(An-Chi Wei)
dc.contributor.authorYu-Chih Chenen
dc.contributor.author陳昱志zh_TW
dc.date.accessioned2022-11-23T09:17:25Z-
dc.date.available2021-08-04
dc.date.available2022-11-23T09:17:25Z-
dc.date.copyright2021-08-04
dc.date.issued2021
dc.date.submitted2021-07-29
dc.identifier.citation1. Larsson DGJ. Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc Lond B, Biol Sci. 2014 Nov 19;369(1656). 2. Teusink B, Walsh MC, van Dam K, Westerhoff HV. The danger of metabolic pathways with turbo design. Trends Biochem Sci. 1998 May;23(5):162–169. 3. Smallbone K, Messiha HL, Carroll KM, Winder CL, Malys N, Dunn WB, et al. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett. 2013 Sep 2;587(17):2832–2841. 4. Sauro HM, Fell DA. SCAMP: A metabolic simulator and control analysis program. Math Comput Model. 1991;15(12):15–28. 5. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol. 2013 Aug 8;7:74. 6. TeSlaa T, Teitell MA. Techniques to monitor glycolysis. Meth Enzymol. 2014;542:91–114. 7. Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021 May 3;13(5). 8. Simulink M. Simulation and model-based design. 2005; 9. Ojeda A, Buscher N, Balasubramani P, Maric V, Ramanathan D, Mishra J. SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans. Biomed Phys Eng Express. 2020 Apr 15;6(3):035023. 10. Roozbahani H, Alizadeh M, Ustinov S, Handroos H. Development of a novel real-time simulation of human skeleton/muscles. J Biomech. 2021 Jan 4;114:110157. 11. Wabel P, Leonhardt S. A Simulink model for the human circulatory system. Biomed Tech (Berl). 1998;43 Suppl:314–315. 12. Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965 May;12:88–118. 13. Berg JM, Tymoczko JL, Stryer L. The glycolytic pathway is tightly controlled. Biochemistry. 2002; 14. Peskov K, Goryanin I, Demin O. Kinetic model of phosphofructokinase-1 from Escherichia coli. J Bioinform Comput Biol. 2008 Aug;6(4):843–867. 15. Straube R, Nicola EM. Diffusive coupling can discriminate between similar reaction mechanisms in an allosteric enzyme system. BMC Syst Biol. 2010 Nov 30;4:165. 16. Kerkhoven EJ, Lahtvee P-J, Nielsen J. Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Res. 2015 Jan 14;15(1):1–13. 17. Schuster S, Kahn D, Westerhoff HV. Modular analysis of the control of complex metabolic pathways. Biophys Chem. 1993 Nov;48(1):1–17. 18. Neves MJ, Hohmann S, Bell W, Dumortier F, Luyten K, Ramos J, et al. Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet. 1995 Jan;27(2):110–122. 19. Vicente RL, Spina L, Gómez JPL, Dejean S, Parrou J-L, François JM. Trehalose-6-phosphate promotes fermentation and glucose repression in Saccharomyces cerevisiae. Microb Cell. 2018 Oct 1;5(10):444–459. 20. Ernandes JR, De Meirsman C, Rolland F, Winderickx J, de Winde J, Brandão RL, et al. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Yeast. 1998 Feb;14(3):255–269. 21. Thevelein JM, Hohmann S. Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci. 1995 Jan;20(1):3–10. 22. Eastmond PJ, Graham IA. Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Curr Opin Plant Biol. 2003 Jun;6(3):231–235. 23. Malys N, Carroll K, Miyan J, Tollervey D, McCarthy JEG. The “scavenger” m7GpppX pyrophosphatase activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res. 2004 Jul 7;32(12):3590–3600. 24. Messiha HL, Malys N, Carroll KM. Towards a full quantitative description of yeast metabolism a systematic approach for estimating the kinetic parameters of isoenzymes under in vivo like conditions. Meth Enzymol. 2011;500:215–231. 25. Swainston N, Golebiewski M, Messiha HL, Malys N, Kania R, Kengne S, et al. Enzyme kinetics informatics: from instrument to browser. FEBS J. 2010 Sep;277(18):3769–3779. 26. Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB. Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enzyme Microb Technol. 1987 Mar;9(3):181–186. 27. Markx GH, Davey CL, Kell DB. The permittistat: a novel type of turbidostat. J Gen Microbiol. 1991 Apr 1;137(4):735–743. 28. Winder CL, Lanthaler K. The use of continuous culture in systems biology investigations. Meth Enzymol. 2011;500:261–275. 29. Pir P, Gutteridge A, Wu J, Rash B, Kell DB, Zhang N, et al. The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol. 2012 Jan 13;6:4. 30. Carroll KM, Simpson DM, Eyers CE, Knight CG, Brownridge P, Dunn WB, et al. Absolute quantification of the glycolytic pathway in yeast: deployment of a complete QconCAT approach. Mol Cell Proteomics. 2011 Dec;10(12):M111.007633. 31. Swainston N, Jameson D, Carroll K. A QconCAT informatics pipeline for the analysis, visualization and sharing of absolute quantitative proteomics data. Proteomics. 2011 Jan;11(2):329–333. 32. Dunn WB, Winder CL. Sample preparation related to the intracellular metabolome of yeast methods for quenching, extraction, and metabolite quantitation. Meth Enzymol. 2011;500:277–297. 33. Martins AM, Sha W, Evans C, Martino-Catt S, Mendes P, Shulaev V. Comparison of sampling techniques for parallel analysis of transcript and metabolite levels in Saccharomyces cerevisiae. Yeast. 2007 Mar;24(3):181–188. 34. Ananiadou S, Kell DB, Tsujii J. Text mining and its potential applications in systems biology. Trends Biotechnol. 2006 Dec;24(12):571–579. 35. Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol. 2008 Oct;26(10):1155–1160. 36. Dobson PD, Smallbone K, Jameson D, Simeonidis E, Lanthaler K, Pir P, et al. Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol. 2010 Oct 28;4:145. 37. Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP. Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol. 2012 Jun 4;6:55. 38. Swainston N, Mendes P, Kell DB. An analysis of a “community-driven” reconstruction of the human metabolic network. Metabolomics. 2013 Aug;9(4):757–764. 39. Chandra FA, Buzi G, Doyle JC. Glycolytic oscillations and limits on robust efficiency. Science. 2011 Jul 8;333(6039):187–192. 40. Sohail M, Suter E. The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. pdfs.semanticscholar.org. 41. Del Vecchio D, Dy AJ, Qian Y. Control theory meets synthetic biology. J R Soc Interface. 2016 Jul 20;13(120). 42. Wu S-J, Wu C-T. Simulink-Based Analysis for Coupled Metabolic Systems. Applied Computational Intelligence and Soft Computing. 2018 Dec 2;2018:1–10. 43. Savageau MA. Introduction to S-systems and the underlying power-law formalism. Math Comput Model. 1988;11:546–551. 44. Kasmuri NH, Kamarudin SK, Abdullah SRS, Hasan HA, Som AM. Integrated advanced nonlinear neural network-simulink control system for production of bio-methanol from sugar cane bagasse via pyrolysis. Energy. 2019 Feb;168:261–272. 45. Michaelis L, Menten ML. Die kinetik der invertinwirkung. Biochem z. 1913; 46. Koshland DE, Némethy G, Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. 47. Jaffe EK. Morpheeins--a new structural paradigm for allosteric regulation. Trends Biochem Sci. 2005 Sep;30(9):490–497. 48. Haanstra JR, van Tuijl A, Kessler P, Reijnders W, Michels PAM, Westerhoff HV, et al. Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proc Natl Acad Sci USA. 2008 Nov 18;105(46):17718–17723. 49. Parsons M. Glycosomes: parasites and the divergence of peroxisomal purpose. Mol Microbiol. 2004 Aug;53(3):717–724. 50. van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science. 2014 Feb 28;343(6174):1245114.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79935-
dc.description.abstract糖解作用(Glycolysis)是生物體的核心代謝途徑,在文獻中有不少可以提供參考的數學模型,因此是用電腦程式建模與模擬較好呈現的一個生化途徑。本論文透過Simulink®建模和其他電腦建模方法做比較,並且也對不同的糖解數學模型做比較,探討糖解模型之間的相似度與相異度,並探討是否可以用糖解模型之模擬取代生物實驗。 此篇論文重製了兩篇不同團隊提出來的糖解模型(簡化糖解模型及完整糖解模型),加以修改、比較及討論。針對簡化過後的模型和還未簡化的模型,去比較這兩者糖解模型行為模式的差異,雖然不同的模型所探討的代謝問題不一樣,但因為探討的主要對象和生化機制相同,其存在相同的部分代謝途徑可以作為比較的重點。 本論文的架構為利用Simulink®去實現糖解作用的數學模型,針對不同的模型去做參數上面的調整,比較簡化前後的差異,另外比較及說明Simulink®這個套件的優缺點,及所適合使用的模型類型。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:17:25Z (GMT). No. of bitstreams: 1
U0001-2707202113525200.pdf: 3797120 bytes, checksum: 716e070255eaf5624f8b5a0efdc9c21a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents第 1 章 Introduction 10 1-1研究動機及目的 11 1-2論文貢獻 11 1-3糖解作用(Glycolysis)介紹 12 1-4 Simulink®模擬工具 20 1-5 MWC model 21 1-6文獻回顧 22 第 2 章 Method 33 第 3 章 Result 42 3-1結果重現 42 3-2 Simulink®重現Turbo model和Simulink® 重現whole glycolysis model比較 44 第 4 章 Discussion 57 4-1模型比較 57 4-2 Simulink® 比較 60 Appendix 62 Reference 77
dc.language.isozh-TW
dc.subject生物系統zh_TW
dc.subject糖解作用zh_TW
dc.subject數學模型zh_TW
dc.subjectGlycolysisen
dc.subjectSystem biologyen
dc.subjectSimulinken
dc.title利用Simulink®檢測糖解作用模型之動態行為zh_TW
dc.titleAnalysis of dynamic behaviour in yeast glycolysis models using Simulink®en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許少瑜(Hsin-Tsai Liu),何奕平(Chih-Yang Tseng)
dc.subject.keyword生物系統,數學模型,糖解作用,zh_TW
dc.subject.keywordGlycolysis,Simulink,System biology,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202101796
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-2707202113525200.pdf3.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved