Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑(Chun-Chieh Wu)
dc.contributor.authorYu-An Chenen
dc.contributor.author陳禹安zh_TW
dc.date.accessioned2022-11-23T09:16:43Z-
dc.date.available2021-08-04
dc.date.available2022-11-23T09:16:43Z-
dc.date.copyright2021-08-04
dc.date.issued2021
dc.date.submitted2021-07-28
dc.identifier.citationBarnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 1446-1458. Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 1979-2013. ——, W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322-352. Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715-1731. Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of typhoon Megi (2010), J. Atmos. Sci., 74, 1169-1200. Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis, Mon. Wea. Rev., 119, 1929-1953. DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133-1147. Ditchek, S. D., Molinari, J. and D. Vollaro 2017: Tropical cyclone outflow-layer structure and balanced response to eddy forcings. J. Atmos. Sci., 74, 133-149. Dunion, J. P. 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere, J. Climate, 24, 893-908. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance, J. Atmos. Sci., 43, 585-605. ——, and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 2236-2249. Fischer, M. S., Tang, B. H., and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after Genesis, Mon. Wea. Rev., 145, 1295-1313. Fitzpatrick, P. J., J. A. Knaff, C. W. Landsea, and S. V. Finley, 1995: Documentation of a systematic bias in the Aviation Model’s forecast of the Atlantic tropical upper-tropospheric trough: Implications for tropical cyclone forecasting. Wea. Forecasting, 10, 433-446. Frank, W. M., and, E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes, Mon. Wea. Rev., 129, 2249-2269. Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859-3875. Gu, J. F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511-530. Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 2570-2584. Holliday, C. R., and Thompson, A. H. 1979. Climatological Characteristics of Rapidly Intensifying Typhoons, Mon. Wea. Rev., 107, 1022-1034. Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and Collins, W. D., 2008: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. Janjić, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes, Mon. Wea. Rev., 122, 927-945. Kain, John S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181. Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108. Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 2687-2709. Leroux, M.-D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 2547-2565. ——, ——, and Roux, F. 2016. On the Sensitivity of Tropical Cyclone Intensification under Upper-Level Trough Forcing, Mon. Wea. Rev., 144, 1179-1202. Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM Model Using a Digital Filter. Mon. Wea. Rev., 120, 1019-1034. Mesinger, F., 1993: Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res. Activ. in Atmos. and Ocean. Mod., WMO, Geneva, CAS/JSC WGNE, Rep. No. 18, 4.28-4.29. Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112-129. Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093-1105. ——, and ——, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 1902-1918. ——, S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity evolution. J. Atmos. Sci., 52, 3593-3606. ——, J., Skubis, S., Vollaro, D., Alsheimer, F., and Willoughby, H. E., 1998. Potential Vorticity Analysis of Tropical Cyclone Intensification, J. Atmos. Sci., 55, 2632-2644. ——, and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869-3885. ——, and ——, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 3739-3746. Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349-2371. Rappin, E. D., Morgan, M. C., and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure, J. Atmos. Sci., 68, 177-194. Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163-3188. ——, ——, and ——, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327-346. Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 1555-1575. ——, and ——, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 1717-1738. Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44-70. Rotunno, R. and K.A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561. Simpson, R., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc., Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1–D4-10. Steiner, M., R.A. Houze, and S.E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor., 34, 1978-2007. Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17-55. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of tropical cyclone warm core. J. Atmos. Sci., 66, 3335-3350. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257-278. Wang, C., and L. Wu, 2016: Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the western North Pacific. J. Climate, 29, 4203-4211. Wang, Z., Zhang, G., Dunkerton, T. J., and Jin, F. F. 2020: Summertime stationary waves integrate tropical and extratropical impacts on tropical cyclone activity. Proceedings of the National Academy of Sciences of the United States of America, 117, 22720-22726. Wei, N., Y. Li, D.-Z. Zhang, Z. Mai, and S.-Q. Yang, 2016: A statistical analysis of the relationship between upper-tropospheric cold low and tropical cyclone track and intensity changes over the western North Pacific. Mon. Wea. Rev., 144, 1805-1822. Wen, D., Y. Li, D. Zhang, L. Xue, and N. Wei, 2018: A statistical analysis of tropical upper-tropospheric trough cells over the western North Pacific during 2006–15. J. Appl. Meteor. Climatol., 57, 2469-2483. WMO, 2015: Eighth International Workshop on Tropical Cyclones (IWTC-VIII). Publ. WMO, WWRP 2015-1, Jeju, Korea, World Meteorological Organization. Wu, C.-C., and H. Cheng, 1999: An observational study of environmental influences on the intensity changes of typhoons Flo (1990) and Gene (1990). Mon. Wea. Rev., 127, 3003-3031. ——, and K. A. Emanuel. 1995a: Potential vorticity diagnostics of hurricane movement. Part 1: A case study of hurricane Bob (1991), Mon. Wea. Rev., 123, 69-92. ——, and ——, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93-109. ——, T. S. Huang, W. P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Super Typhoon Saomai (2000). Mon. Wea. Rev., 131, 1289-1300. ——, K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383-2395. ——, K. W. Kevin, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to the interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 2049-2064. Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208-2221. Yang, C.-C., C.-C. Wu, K.-H. Chou, and C.-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 4593-4611. Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789-2809. Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79919-
dc.description.abstract颱風與槽線交互作用對颱風強度可同時造成有利和不利影響,因此在研究與預報上仍具挑戰。其中在西北太平洋,高層冷心低壓則是另一種常見可與颱風交互作用的高層環境系統。本研究目的在於了解高層冷心低壓對颱風強度及結構的影響,以及區分有利和不利颱風發展的高層冷心低壓配置。研究的第一部分進行真實個案模擬,控制組實驗(CTRL)模擬2016年的尼伯特颱風,另外還透過片段位渦反演的方法進行移除高層冷心低壓的實驗(noCL),目的是能夠量化高層冷心低壓對颱風的影響程度。第二部分則在準理想(quasi-idealized)的架構下進行高層冷心低壓與颱風間配置的敏感性實驗測試。 真實個案模擬的結果顯示,控制組實驗在颱風與冷心低壓交互作用期間,冷心低壓將伴隨慣性穩定度較低、對稱不穩定度較高、渦流角動量通量輻合較高等環境條件,使得颱風外流形成不對稱結構且有利於其擴張。此外,控制組實驗的快速增強時間明顯較早,伴隨眼牆附近較強的對流活動以及較快的軸對稱化過程。本研究接著提出三個冷心低壓影響颱風內核結構的可能機制。首先,冷心低壓環流相對於颱風將伴隨較低的絕對角動量,這將使颱風外流擴展所需的能量耗散下降,因此颱風可保留較多的淨能量來源進行其他方面的作功,也使的颱風增強速率提高。另外,由於冷心低壓始終與颱風保持一定的距離,且交互作用過程中不斷被颱風本身的外流反氣旋場削弱,這可使冷心低壓引發的垂直風切有效降低。因此在控制組實驗中,風切引發的下沉運動所伴隨的邊界層頂低熵空氣明顯較低,颱風的淨能量來源也能有效保留不被抵銷。最後,我們透過Sawyer-Eliassen平衡診斷方程發現冷心低壓的環境渦流強迫可直接造成颱風次環流的增強,有利於颱風發展。整體來說,尼伯特颱風與冷心低壓的交互作用有利颱風發展。冷心低壓除了額外提供有利條件,也降低風切造成的不利因素,使得颱風淨能量來源得以保留、軸對稱化過程較快且快速增強肇始時間提早。 敏感性實驗結果顯示颱風增強速度主要由垂直風切量值所決定。當冷心低壓位於颱風北側或西北側且維持大約一倍羅士培變形半徑的適當距離(約600到1000公里),交互作用將最有利颱風發展。若冷心低壓始終位在颱風近距離東側且保持一定強度,交互作用將不利颱風發展。另外,只要冷心低壓伴隨的風切保持不高,即使距離很近也可發生有利的交互作用。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:16:43Z (GMT). No. of bitstreams: 1
U0001-2807202114031800.pdf: 34097778 bytes, checksum: f809f57b2d7a4c9e86a94d5b230bc81e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 .……………………………………..………………………………………………………… I 摘要 .……………………………………..………………………………………………………… II Abstract …………….………………...…………………………………………………………… III Table of contents ….........………...……………………...………………………………………… V List of Tables .............……………...…………………………………………………………… VII List of Figures ..............……………...…………………………………………………………… VIII Chapter 1 Introduction ………………...…………………………………………………………… 1 1.1 The factors associated with tropical cyclone intensity and structure ………………… 1 1.2 TC-trough interaction …………………………………………………………………… 3 1.2.1 PV and EFC of angular momentum perspectives ……………………….………… 3 1.2.2 Inertial stability perspective …………………….……………………….………… 5 1.2.3 Detrimental impacts …………………………….……………………….………… 6 1.2.4 Good trough versus bad trough ……….………………………………….………… 7 1.3 Upper-tropospheric cold low …………………………………………………………... 8 1.4 Motivations and the scientific objectives ………………………………………………... 10 Chapter 2 Data and Methodology …….…………………………………………………………… 12 2.1 Numerical model settings ………………………………………….…………………… 12 2.2 Real-case simulations: the control experiment …………………………………………… 13 2.3 Real-case simulations: the no UTCL experiment ………………………………………… 14 2.4 Quasi-idealized sensitivity experiments ………………………………………………….. 16 Chapter 3 Results --- Real-case simulations …………………………………………………… 18 3.1 The composite and simulated UTCL …………………………………………………… 18 3.2 Overview of the simulation results ….………………………………………………… 19 3.2.1 Intensity and track evolution …………………….……………………….……… 19 3.2.2 Features of TC intensification process ………...……………………….……… 20 3.2.3 Synoptic analysis ……………………………………………………….……… 22 3.3 The characteristics of TC-UTCL interaction …………………….……………………….. 23 3.3.1 Upper-level configuration ………………………...……………………….……… 23 3.3.2 Upper-level stability and forcing ………………………………………….……… 25 3.4 The mechanisms of TC–UTCL interaction leading to the change of intensification rate ... 27 3.4.1 Reduction of energy sink in the outflow layer …..……………………….……… 28 3.4.2 Detrimental effects from vertical wind shear …….……………………….……… 29 3.4.3 Sawyer Eliassen Diagnosis ……………………….……………………….……… 32 Chapter 4 Results --- Quasi-idealized sensitivity experiments …...……………………………… 36 4.1 Overview of the control run ……………………………………………..……………… 36 4.2 Preliminary results of the sensitivity experiments ……………………………………… 37 Chapter 5 Conclusions ..………………..………………………………………………………… 41 5.1 Summary and discussions ……………………………………………….……………… 41 5.2 Future works ………….………………………………………………………………… 45 References ………………………………………………………………………………………… 46 Tables ……………………………………………………………………………………………… 53 Figures …………………………………………………………………………………………… 56
dc.language.isoen
dc.subject颱風強度與結構變化zh_TW
dc.subject高層冷心低壓zh_TW
dc.subject羅士培變形半徑zh_TW
dc.subjectSawyer Eliassen平衡診斷方程zh_TW
dc.subject片段位渦反演zh_TW
dc.subject角動量渦流通量輻合zh_TW
dc.subject淨能量來源zh_TW
dc.subject垂直風切zh_TW
dc.subjectRossby radius of deformationen
dc.subjectTropical cyclone intensity and structural changeen
dc.subjectUpper-tropospheric cold lowen
dc.subjectPiecewise potential vorticity inversionen
dc.subjecteddy flux convergence of angular momentumen
dc.subjectnet heat energyen
dc.subjectvertical wind shearen
dc.subjectSawyer-Eliassen balanced modelen
dc.title高層冷心低壓對颱風強度及結構影響之機制探討zh_TW
dc.titleEnvironmental Forcing of Upper-tropospheric Cold Low on Tropical Cyclone Intensity and Structural Changeen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee連國淵(Hsin-Tsai Liu),黃清勇(Chih-Yang Tseng)
dc.subject.keyword颱風強度與結構變化,高層冷心低壓,片段位渦反演,角動量渦流通量輻合,淨能量來源,垂直風切,Sawyer Eliassen平衡診斷方程,羅士培變形半徑,zh_TW
dc.subject.keywordTropical cyclone intensity and structural change,Upper-tropospheric cold low,Piecewise potential vorticity inversion,eddy flux convergence of angular momentum,net heat energy,vertical wind shear,Sawyer-Eliassen balanced model,Rossby radius of deformation,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202101850
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-2807202114031800.pdf33.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved