請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79916完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | Yi-Wen Lin | en |
| dc.contributor.author | 林怡彣 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:35Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-23T09:16:35Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-11 | |
| dc.identifier.citation | [1] M. Ullsperger and S. Debener, Simultaneous EEG and fMRI: recording, analysis, and application. Oxford University Press, 2010. [2] M. Moosmann et al., 'Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy,' Neuroimage, vol. 20, no. 1, pp. 145-158, 2003. [3] C. Mulert et al., 'Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making,' Neuroimage, vol. 42, no. 1, pp. 158-168, 2008. [4] K. Krakow et al., 'Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI,' Epileptic disorders, vol. 3, no. 2, pp. 67-74, 2001. [5] P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux, 'Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction,' Neuroimage, vol. 8, no. 3, pp. 229-239, 1998. [6] R. I. Goldman, J. M. Stern, J. Engel Jr, and M. S. Cohen, 'Acquiring simultaneous EEG and functional MRI,' Clinical neurophysiology, vol. 111, no. 11, pp. 1974-1980, 2000. [7] R. K. Niazy, C. F. Beckmann, G. D. Iannetti, J. M. Brady, and S. M. Smith, 'Removal of FMRI environment artifacts from EEG data using optimal basis sets,' Neuroimage, vol. 28, no. 3, pp. 720-737, 2005. [8] G. Srivastava, S. Crottaz-Herbette, K. Lau, G. H. Glover, and V. Menon, 'ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner,' Neuroimage, vol. 24, no. 1, pp. 50-60, 2005. [9] D. Mantini, M. G. Perrucci, S. Cugini, A. Ferretti, G. L. Romani, and C. Del Gratta, 'Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis,' Neuroimage, vol. 34, no. 2, pp. 598-607, 2007. [10] K. Vanderperren et al., 'Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects,' Neuroimage, vol. 50, no. 3, pp. 920-934, 2010. [11] N. Shams, C. Alain, and S. Strother, 'Comparison of BCG artifact removal methods for evoked responses in simultaneous EEG–fMRI,' Journal of neuroscience methods, vol. 245, pp. 137-146, 2015. [12] M. E. Raichle, 'A brief history of human functional brain mapping,' in Brain mapping: The systems: Elsevier, 2000, pp. 33-75. [13] O. J. Arthurs and S. Boniface, 'How well do we understand the neural origins of the fMRI BOLD signal?,' TRENDS in Neurosciences, vol. 25, no. 1, pp. 27-31, 2002. [14] S. Ogawa, T.-M. Lee, R. Stepnoski, W. Chen, X.-H. Zhu, and K. Ugurbil, 'An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds,' Proceedings of the National Academy of Sciences, vol. 97, no. 20, pp. 11026-11031, 2000. [15] J. B. Goense and N. K. Logothetis, 'Neurophysiology of the BOLD fMRI signal in awake monkeys,' Current Biology, vol. 18, no. 9, pp. 631-640, 2008. [16] J. U. Blicher et al., 'Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI,' Journal of Cerebral Blood Flow Metabolism, vol. 32, no. 11, pp. 2044-2054, 2012. [17] M. Fabiani et al., 'Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study,' Neuroimage, vol. 85, pp. 592-607, 2014. [18] S. Tarantini, C. H. T. Tran, G. R. Gordon, Z. Ungvari, and A. Csiszar, 'Impaired neurovascular coupling in aging and Alzheimer's disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline,' Experimental gerontology, vol. 94, pp. 52-58, 2017. [19] D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, and G. Buzsaki, 'Intracellular features predicted by extracellular recordings in the hippocampus in vivo,' Journal of neurophysiology, vol. 84, no. 1, pp. 390-400, 2000. [20] A. S. Shah et al., 'Neural dynamics and the fundamental mechanisms of event-related brain potentials,' Cerebral cortex, vol. 14, no. 5, pp. 476-483, 2004. [21] S. Murakami and Y. Okada, 'Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals,' The Journal of physiology, vol. 575, no. 3, pp. 925-936, 2006. [22] C. Kaufmann et al., 'Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study,' Brain, vol. 129, no. 3, pp. 655-667, 2006. [23] J. A. Meltzer et al., 'Effects of working memory load on oscillatory power in human intracranial EEG,' Cerebral Cortex, vol. 18, no. 8, pp. 1843-1855, 2008. [24] S. I. Gonçalves et al., 'Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability,' Neuroimage, vol. 30, no. 1, pp. 203-213, 2006. [25] H. Laufs et al., 'Where the BOLD signal goes when alpha EEG leaves,' Neuroimage, vol. 31, no. 4, pp. 1408-1418, 2006. [26] L. Tyvaert, P. LeVan, C. Grova, F. Dubeau, and J. Gotman, 'Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies,' Clinical neurophysiology, vol. 119, no. 12, pp. 2762-2774, 2008. [27] H. Laufs et al., 'Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest,' Proceedings of the national academy of sciences, vol. 100, no. 19, pp. 11053-11058, 2003. [28] E. M. Whitham et al., 'Thinking activates EMG in scalp electrical recordings,' Clinical neurophysiology, vol. 119, no. 5, pp. 1166-1175, 2008. [29] P. J. Allen, O. Josephs, and R. Turner, 'A method for removing imaging artifact from continuous EEG recorded during functional MRI,' Neuroimage, vol. 12, no. 2, pp. 230-239, 2000. [30] W. X. Yan, K. J. Mullinger, G. B. Geirsdottir, and R. Bowtell, 'Physical modeling of pulse artefact sources in simultaneous EEG/fMRI,' Human brain mapping, vol. 31, no. 4, pp. 604-620, 2010. [31] K. Anami et al., 'Reduction of ballistocardiogram with a vacuum head-fixating system during simultaneous fMRI and multi-channel monopolar EEG recording,' in International Congress Series, 2002, vol. 1232: Elsevier, pp. 427-431. [32] K. J. Mullinger, J. Havenhand, and R. Bowtell, 'Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner,' Neuroimage, vol. 71, pp. 75-83, 2013. [33] S. Debener, K. J. Mullinger, R. K. Niazy, and R. W. Bowtell, 'Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength,' International Journal of Psychophysiology, vol. 67, no. 3, pp. 189-199, 2008. [34] J. L. Vincent, L. J. Larson-Prior, J. M. Zempel, and A. Z. Snyder, 'Moving GLM ballistocardiogram artifact reduction for EEG acquired simultaneously with fMRI,' Clinical Neurophysiology, vol. 118, no. 5, pp. 981-998, 2007. [35] M. Ellingson, E. Liebenthal, M. Spanaki, T. Prieto, J. Binder, and K. Ropella, 'Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI,' Neuroimage, vol. 22, no. 4, pp. 1534-1542, 2004. [36] R. Becker, P. Ritter, M. Moosmann, and A. Villringer, 'Visual evoked potentials recovered from fMRI scan periods,' Human brain mapping, vol. 26, no. 3, pp. 221-230, 2005. [37] P. Comon, 'Independent component analysis, a new concept?,' Signal processing, vol. 36, no. 3, pp. 287-314, 1994. [38] T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, 'Analysis and visualization of single‐trial event‐related potentials,' Human brain mapping, vol. 14, no. 3, pp. 166-185, 2001. [39] J. Iriarte et al., 'Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study,' Journal of clinical neurophysiology, vol. 20, no. 4, pp. 249-257, 2003. [40] S. Debener, M. Ullsperger, M. Siegel, K. Fiehler, D. Y. Von Cramon, and A. K. Engel, 'Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring,' Journal of Neuroscience, vol. 25, no. 50, pp. 11730-11737, 2005. [41] S. Debener et al., 'Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact,' Neuroimage, vol. 34, no. 2, pp. 587-597, 2007. [42] R. Abreu et al., 'Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI,' Neuroimage, vol. 135, pp. 45-63, 2016. [43] F. Grouiller, L. Vercueil, A. Krainik, C. Segebarth, P. Kahane, and O. David, 'A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI,' Neuroimage, vol. 38, no. 1, pp. 124-137, 2007. [44] K. J. Mullinger, P. S. Morgan, and R. W. Bowtell, 'Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings,' Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 27, no. 3, pp. 607-616, 2008. [45] H. Mandelkow, P. Halder, P. Boesiger, and D. Brandeis, 'Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth,' Neuroimage, vol. 32, no. 3, pp. 1120-1126, 2006. [46] M. Moosmann, V. H. Schönfelder, K. Specht, R. Scheeringa, H. Nordby, and K. Hugdahl, 'Realignment parameter-informed artefact correction for simultaneous EEG–fMRI recordings,' Neuroimage, vol. 45, no. 4, pp. 1144-1150, 2009. [47] G. Bonmassar et al., 'Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI,' Neuroimage, vol. 16, no. 4, pp. 1127-1141, 2002. [48] K. H. Kim, H. W. Yoon, and H. W. Park, 'Improved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI,' Journal of neuroscience methods, vol. 135, no. 1-2, pp. 193-203, 2004. [49] I. I. Christov, 'Real time electrocardiogram QRS detection using combined adaptive threshold,' Biomedical engineering online, vol. 3, no. 1, pp. 1-9, 2004. [50] M. Marino et al., 'Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI,' Scientific reports, vol. 8, no. 1, pp. 1-11, 2018. [51] C. M. MacLeod, 'Half a century of research on the Stroop effect: an integrative review,' Psychological bulletin, vol. 109, no. 2, p. 163, 1991. [52] N. Wild-Wall, M. Falkenstein, and P. D. Gajewski, 'Neural correlates of changes in a visual search task due to cognitive training in seniors,' Neural Plasticity, vol. 2012, 2012. [53] I. Babu Henry Samuel, C. Wang, S. E. Burke, B. Kluger, and M. Ding, 'Compensatory neural responses to cognitive fatigue in young and older adults,' Frontiers in neural circuits, vol. 13, p. 12, 2019. [54] C. M. Atkinson, K. A. Drysdale, and W. Fulham, 'Event-related potentials to Stroop and reverse Stroop stimuli,' International journal of psychophysiology, vol. 47, no. 1, pp. 1-21, 2003. [55] J. Polich, 'Updating P300: an integrative theory of P3a and P3b,' Clinical neurophysiology, vol. 118, no. 10, pp. 2128-2148, 2007. [56] R. Oostenvelt, A. Delorme, and S. Makeig, 'DIPFIT: equivalent dipole source localization of independent components,' ed, 2003. [57] R. Johnson Jr, 'On the neural generators of the P300 component of the event‐related potential,' Psychophysiology, vol. 30, no. 1, pp. 90-97, 1993. [58] S. Assecondi et al., 'Effect of the static magnetic field of the MR-scanner on ERPs: evaluation of visual, cognitive and motor potentials,' Clinical Neurophysiology, vol. 121, no. 5, pp. 672-685, 2010. [59] R. West and M. A. Bell, 'Stroop color—word interference and electroencephalogram activation: Evidence for age-related decline of the anterior attention system,' Neuropsychology, vol. 11, no. 3, p. 421, 1997. [60] M. Ergen, S. Saban, E. Kirmizi-Alsan, A. Uslu, Y. Keskin-Ergen, and T. Demiralp, 'Time–frequency analysis of the event-related potentials associated with the Stroop test,' International Journal of Psychophysiology, vol. 94, no. 3, pp. 463-472, 2014. [61] F. Barwick, P. Arnett, and S. Slobounov, 'EEG correlates of fatigue during administration of a neuropsychological test battery,' Clinical Neurophysiology, vol. 123, no. 2, pp. 278-284, 2012. [62] X. Liu, H. Qi, S. Wang, and M. Wan, 'Wavelet-based estimation of EEG coherence during Chinese Stroop task,' Computers in biology and medicine, vol. 36, no. 12, pp. 1303-1315, 2006. [63] P. Putman, E. Arias-Garcia, I. Pantazi, and C. van Schie, 'Emotional Stroop interference for threatening words is related to reduced EEG delta–beta coupling and low attentional control,' International Journal of Psychophysiology, vol. 84, no. 2, pp. 194-200, 2012. [64] H. F. Posada-Quintero, N. Reljin, J. B. Bolkhovsky, A. D. Orjuela-Cañón, and K. H. Chon, 'Brain activity correlates with cognitive performance deterioration during sleep deprivation,' Frontiers in neuroscience, vol. 13, p. 1001, 2019. [65] A. Vallesi, 'Targets and non-targets in the aging brain: a go/nogo event-related potential study,' Neuroscience letters, vol. 487, no. 3, pp. 313-317, 2011. [66] G. Lucci, M. Berchicci, D. Spinelli, F. Taddei, and F. Di Russo, 'The effects of aging on conflict detection,' PloS one, vol. 8, no. 2, p. e56566, 2013. [67] A. Vallesi, A. R. McIntosh, and D. T. Stuss, 'Overrecruitment in the aging brain as a function of task demands: evidence for a compensatory view,' Journal of cognitive neuroscience, vol. 23, no. 4, pp. 801-815, 2011. [68] C.-M. Huang, T. A. Polk, J. O. Goh, and D. C. Park, 'Both left and right posterior parietal activations contribute to compensatory processes in normal aging,' Neuropsychologia, vol. 50, no. 1, pp. 55-66, 2012. [69] P. D. Gajewski and M. Falkenstein, 'Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence,' Brain and cognition, vol. 98, pp. 87-101, 2015. [70] A. Pfefferbaum, J. M. Ford, B. G. Wenegrat, W. T. Roth, and B. S. Kopell, 'Clinical application of the P3 component of event-related potentials. I. Normal aging,' Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 59, no. 2, pp. 85-103, 1984. [71] U. Lindenberger and P. B. Baltes, 'Sensory functioning and intelligence in old age: a strong connection,' Psychology and aging, vol. 9, no. 3, p. 339, 1994. [72] C. L. Grady et al., 'Age-related changes in cortical blood flow activation during visual processing of faces and location,' Journal of Neuroscience, vol. 14, no. 3, pp. 1450-1462, 1994. [73] S. W. Davis, N. A. Dennis, S. M. Daselaar, M. S. Fleck, and R. Cabeza, 'Que PASA? The posterior–anterior shift in aging,' Cerebral cortex, vol. 18, no. 5, pp. 1201-1209, 2008. [74] J. Ansado, O. Monchi, N. Ennabil, S. Faure, and Y. Joanette, 'Load-dependent posterior–anterior shift in aging in complex visual selective attention situations,' Brain research, vol. 1454, pp. 14-22, 2012. [75] M. T. Banich et al., 'Attentional selection and the processing of task-irrelevant information: insights from fMRI examinations of the Stroop task,' in Progress in brain research, vol. 134: Elsevier, 2001, pp. 459-470. [76] J. Castelhano, I. C. Duarte, M. Wibral, E. Rodriguez, and M. Castelo‐Branco, 'The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI,' Human brain mapping, vol. 35, no. 10, pp. 5219-5235, 2014. [77] J. Chun, S. J. Peltier, D. Yoon, T. C. Manschreck, and P. J. Deldin, 'Prolongation of ERP latency and reaction time (RT) in simultaneous EEG/fMRI data acquisition,' Journal of neuroscience methods, vol. 268, pp. 78-86, 2016. [78] G. Lantz, R. G. De Peralta, L. Spinelli, M. Seeck, and C. Michel, 'Epileptic source localization with high density EEG: how many electrodes are needed?,' Clinical neurophysiology, vol. 114, no. 1, pp. 63-69, 2003. [79] D. Yao, 'A method to standardize a reference of scalp EEG recordings to a point at infinity,' Physiological measurement, vol. 22, no. 4, p. 693, 2001. [80] P. Yang, C. Fan, M. Wang, and L. Li, 'A comparative study of average, linked mastoid, and REST references for ERP components acquired during fMRI,' Frontiers in neuroscience, vol. 11, p. 247, 2017. [81] P. L. Nunez, 'REST: a good idea but not the gold standard,' Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, vol. 121, no. 12, p. 2177, 2010. [82] K. J. Gorgolewski et al., 'The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments,' Scientific data, vol. 3, no. 1, pp. 1-9, 2016. [83] B. A. Nosek et al., 'Promoting an open research culture,' Science, vol. 348, no. 6242, pp. 1422-1425, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79916 | - |
| dc.description.abstract | "近年來,多模態成像技術常被應用在大腦功能研究中,尤其是神經血管耦合相關的研究領域,經常整合不同影像的結果並探討其機制,而同時取得神經與血管訊號對此耦合現象之研究是至關重要的。非侵入性的功能性磁振造影 (functional Magnetic Resonance Imaging, fMRI) 與腦電圖 (electroencephalography, EEG) 之同步掃描技術,雖然可同時紀錄神經電訊號和來自神經活動所誘發之血管訊號,但卻會對腦電圖產生嚴重干擾:(1) 梯度偽跡與 (2) 心衝擊波偽跡。因此,如何將干擾訊號去除是該同步技術的核心問題之一,也因其訊號處理之技術門檻,使得EEG-fMRI同步技術尚未被廣泛應用。 迄今為止,針對腦電圖之偽跡雖然已提出多種校正方式,但對於何種方法能在校正後得到最佳數據質量,仍未有共識。而市面上雖有針對腦電圖端的處理工具,但在心衝擊波偽跡校正上,除了參數設定較為複雜,且採半自動式抓取心跳複合波,以達到去除心跳干擾的目的,對於掃描時間較長的資料,此步驟的分析將費心耗時。因此,本研究欲改進心衝擊波偽跡校正方式,發展自動檢測心跳複合波演算法,同時也整合多項去除梯度偽跡之方法,加入fMRI頭動參數與主成分分析 (Principal Components Analysis, PCA) 提升偽跡去除效果,並且簡化校正所需參數設定。在MATLAB (MathWorks, Inc., MA, USA) 系統環境下,開發簡易操作之使用者介面,以此建立一個高效的全自動偽跡校正系統 (Automatic Artifact Correction System, AACS)。 與過去研究常使用的商用分析軟體Brain Vision Analyzer 2.0 (Brainproducts Gilching, Germany)、EEGlab的FMRIB工具箱 (Delorme and Makeig, 2004) 相比,本系統成功使MR (Magnetic Resonance) 梯度偽跡的基頻功率多衰減了4.269 %,並且全自動心跳偵測率提升至95 %以上。而心衝擊波偽跡的部分,偽跡殘留量多減少了1.442%,與心跳的相關性也由0.092降至0.073。同時,為了確保偽跡去除乾淨,神經電訊號也有成功被保留下來。我們利用Stroop任務誘發腦電活動,計算事件相關電位 (Event-Related Potential, ERP) 的訊號雜訊比 (Signal-to-Noise Ratio, SNR),作為評估神經功能的替代指標。以掃描室外所收集到,不受環境干擾之腦電圖作為標準,與分別以Analyzer、FMRIB、AACS三種校正系統進行校正後的EEG做比較。結果發現本研究開發之AACS系統使校正後ERP的SNR,從原先的6.639、10.344提升至11.722,與在掃描室外收集到數據所得的12.378相比,差距大幅減少,成功提升了SNR。 最後,我們也嘗試以三個系統分別校正後的ERP成分,製作空間拓樸圖,觀察健康老化是否導致任務執行差異。結果顯示透過AACS系統去除偽跡的腦電圖,在空間拓樸圖的分布範圍更接近於掃描室外的結果。同時,對比年輕組於任務執行期間的枕葉活化表現,可發現老年組的激活腦區更多轉移至額、頂葉。此結果是以神經電訊號技術,更直接地再現過去研究中利用功能性磁振造影,所觀察到的大腦老化模型,衰老後前移 (Posterior-Anterior Shift in Aging, PASA)。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:35Z (GMT). No. of bitstreams: 1 U0001-2701202210564900.pdf: 4470481 bytes, checksum: 1f1ee7c150cf100e1efae3b9816dfa54 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "致謝 I 中文摘要 II Abstract IV 目錄 VII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 論文架構 3 第二章 研究背景 5 2.1 EEG-fMRI同步技術 5 2.1.1 神經血管耦合的重要性 5 2.1.2 頭皮電場訊號來源 7 2.1.2.1 局部場電位 (Local Field Potentials) 7 2.1.2.2 腦神經網絡的振盪 8 2.2 明顯汙染掃描同時所收取腦電圖之偽跡介紹 9 2.2.1 MR梯度偽跡 (MR gradient artifacts (GA)) 10 2.2.2 心衝擊波偽跡 (ballistocardiogram (BCG) artifacts) 11 2.3 常用偽跡校正方式 15 2.3.1 平均偽跡減法 (Average Artifact Subtraction, AAS) 15 2.3.2 最佳基準選擇 (Optimal Basis Selection, OBS) 16 2.3.3 獨立成分分析 (Independent Component Analysis, ICA) 17 2.4 去除偽跡的挑戰 19 2.4.1 去除梯度偽跡的挑戰 19 2.4.2 去除心衝擊波偽跡的挑戰 20 第三章 實驗設計與方法 22 3.1 受試者條件 22 3.2 數據採集 22 3.3 任務刺激與流程 23 3.4 與掃描同步紀錄之腦電圖的前處理 25 3.5 全自動偽跡校正方法 26 3.5.1 MR梯度偽跡校正 27 3.5.2 自動偵測心跳之演算法 30 3.5.3 心衝擊波偽跡校正 33 第四章 驗證偽跡校正成果與實現全自動系統 35 4.1 量化評估AACS系統校正偽跡的成效 35 4.1.1 去除MR梯度偽跡 35 4.1.2 自動心跳峰值偵測 40 4.1.3 去除心衝擊波偽跡 47 4.2 系統介面與使用介紹 58 第五章 系統應用於神經功能評估 61 5.1 Stroop任務所誘發之特定ERP成分介紹 61 5.2 計算事件相關電位之預處理 62 5.3 比較掃描室內、外ERP的SNR與功率拓譜圖 63 5.4 任務刺激後的腦電活動於不同年齡組之變化 67 第六章 結論 77 6.1 偽跡校正成效 77 6.2 AACS系統優勢與限制 79 6.3 神經功能評估結果 81 6.4 未來研究方向 82 參考文獻 84" | |
| dc.language.iso | zh-TW | |
| dc.subject | 事件誘發電位 | zh_TW |
| dc.subject | EEG-fMRI | zh_TW |
| dc.subject | MR梯度偽跡 | zh_TW |
| dc.subject | 心衝擊波偽跡 | zh_TW |
| dc.subject | 腦波偽跡校正 | zh_TW |
| dc.subject | Stroop任務 | zh_TW |
| dc.subject | EEG-fMRI | en |
| dc.subject | Event-Related Potential (ERP) | en |
| dc.subject | Stroop task | en |
| dc.subject | EEG artifact correction | en |
| dc.subject | ballistocardiogram (BCG) artifacts | en |
| dc.subject | MR gradient artifacts (GA) | en |
| dc.title | AACS:EEG-fMRI全自動腦電訊號偽跡校正系統 | zh_TW |
| dc.title | AACS : Development of an Automatic EEG Artifact Correction System for EEG-fMRI | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳昌衛(Ching-Ping Shao),林遠彬(Yung-Cheng Chuang),郭立威,吳育德 | |
| dc.subject.keyword | EEG-fMRI,MR梯度偽跡,心衝擊波偽跡,腦波偽跡校正,Stroop任務,事件誘發電位, | zh_TW |
| dc.subject.keyword | EEG-fMRI,MR gradient artifacts (GA),ballistocardiogram (BCG) artifacts,EEG artifact correction,Stroop task,Event-Related Potential (ERP), | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202200226 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2701202210564900.pdf | 4.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
