請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳信志(Shinn-Chih Wu) | |
| dc.contributor.author | Hsiu-Man Shih | en |
| dc.contributor.author | 石秀曼 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:30Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:16:30Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-29 | |
| dc.identifier.citation | Ankrum, J. A., J. F. Ong, and J. M. Karp. 2014. Mesenchymal stem cells: immune evasive, not immune privileged. Nature Biotechnology 32(3):252-260. doi: 10.1038/nbt.2816 Antoniadou, E., and A. L. David. 2016. Placental stem cells. Best Practice Research Clinical Obstetrics Gynaecology 31:13-29. doi: https://doi.org/10.1016/j.bpobgyn.2015.08.014 Azevedo, P. S., B. F. Polegato, M. F. Minicucci, S. A. R. Paiva, and L. A. M. Zornoff. 2016. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq. Bras. Cardiol. 106(1):62-69. doi: 10.5935/abc.20160005 Bhattacharya, B., T. Miura, R. Brandenberger, J. Mejido, Y. Luo, A. X. Yang, B. H. Joshi, I. Ginis, R. S. Thies, M. Amit, I. Lyons, B. G. Condie, J. Itskovitz-Eldor, M. S. Rao, and R. K. Puri. 2004. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103(8):2956-2964. doi: 10.1182/blood-2003-09-3314 Bursac, N. 2009. Cardiac tissue engineering using stem cells [Cellular/Tissue Engineering]. IEEE Engineering in Medicine and Biology Magazine 28(2):80, 82, 84-86, 88-89. doi: 10.1109/memb.2009.931792 Crisostomo, V., C. Baez-Diaz, J. Maestre, M. Garcia-Lindo, F. Sun, J. G. Casado, R. Blazquez, J. L. Abad, I. Palacios, L. Rodriguez-Borlado, and F. M. Sanchez-Margallo. 2015. Delayed administration of allogeneic cardiac stem cell therapy for acute myocardial infarction could ameliorate adverse remodeling: experimental study in swine. J. Transl. Med. 13:156. doi: 10.1186/s12967-015-0512-2 Deng, F., H. Lei, Y. Hu, L. He, H. Fu, R. Feng, P. Feng, W. Huang, X. Wang, and J. Chang. 2016. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells. Cell and Tissue Banking 17(1):147-159. doi: 10.1007/s10561-015-9514-9 Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315-317. doi: 10.1080/14653240600855905 Gessert, S., and M. Kühl. 2010. The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ. Res. 107(2):186-199. doi: 10.1161/circresaha.110.221531 Gorjipour, F., L. Hosseini-Gohari, A. Ghavidel, S. Hajimiresmaiel, N. Naderi, A. Azar, and H. Pazoki-Toroudi. 2019. Mesenchymal stem cells from human amniotic membrane differentiate into cardiomyocytes and endothelial-like cells without improving cardiac function after surgical administration in rat model of chronic heart failure. Journal of Cardiovascular and Thoracic Research 11:35-42. doi: 10.15171/jcvtr.2019.06 Hasani, S., A. Javeri, A. Asadi, and M. Fakhr Taha. 2020. Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid. Cell J 22(3):273-282. doi: 10.22074/cellj.2020.6582 Heallen, T., M. Zhang, J. Wang, M. Bonilla-Claudio, E. Klysik, R. L. Johnson, and J. F. Martin. 2011. Hippo Pathway Inhibits Wnt Signaling to Restrain Cardiomyocyte Proliferation and Heart Size. Science 332(6028):458-461. doi: 10.1126/science.1199010 Jiang, A., Y. Chen, L. Shi, and F. Li. 2018. Differentiation of brown adipose-derived stem cells into cardiomyocyte-like cells is regulated by a combination of low 5-azacytidine concentration and bone morphogenetic protein 4. Int. J. Clin. Exp. Pathol. 11(11):5514-5524. Kawamura, M., S. Miyagawa, S. Fukushima, A. Saito, K. Miki, E. Ito, N. Sougawa, T. Kawamura, T. Daimon, T. Shimizu, T. Okano, K. Toda, and Y. Sawa. 2013. Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation 128(11 Suppl 1):S87-94. doi: 10.1161/CIRCULATIONAHA.112.000366 Kempf, H., R. Olmer, C. Kropp, M. Ruckert, M. Jara-Avaca, D. Robles-Diaz, A. Franke, D. A. Elliott, D. Wojciechowski, M. Fischer, A. Roa Lara, G. Kensah, I. Gruh, A. Haverich, U. Martin, and R. Zweigerdt. 2014. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 3(6):1132-1146. doi: 10.1016/j.stemcr.2014.09.017 Kim, M. S., A. Horst, S. Blinka, K. Stamm, D. Mahnke, J. Schuman, R. Gundry, A. Tomita-Mitchell, and J. Lough. 2015. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS One 10(2):e0118670. doi: 10.1371/journal.pone.0118670 Kuroda, Y., M. Kitada, S. Wakao, K. Nishikawa, Y. Tanimura, H. Makinoshima, M. Goda, H. Akashi, A. Inutsuka, A. Niwa, T. Shigemoto, Y. Nabeshima, T. Nakahata, Y.-i. Nabeshima, Y. Fujiyoshi, and M. Dezawa. 2010. Unique multipotent cells in adult human mesenchymal cell populations. Proceedings of the National Academy of Sciences:200911647. doi: 10.1073/pnas.0911647107 Laflamme, M. A., K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate, S. K. Dupras, H. Reinecke, C. Xu, M. Hassanipour, S. Police, C. O'Sullivan, L. Collins, Y. Chen, E. Minami, E. A. Gill, S. Ueno, C. Yuan, J. Gold, and C. E. Murry. 2007. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology 25(9):1015-1024. doi: 10.1038/nbt1327 Liu, Y. W., B. Chen, X. Yang, J. A. Fugate, F. A. Kalucki, A. Futakuchi-Tsuchida, L. Couture, K. W. Vogel, C. A. Astley, A. Baldessari, J. Ogle, C. W. Don, Z. L. Steinberg, S. P. Seslar, S. A. Tuck, H. Tsuchida, A. V. Naumova, S. K. Dupras, M. S. Lyu, J. Lee, D. W. Hailey, H. Reinecke, L. Pabon, B. H. Fryer, W. R. MacLellan, R. S. Thies, and C. E. Murry. 2018. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36(7):597-605. doi: 10.1038/nbt.4162 Macrin, D., J. P. Joseph, A. A. Pillai, and A. Devi. 2017. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev. Rep. 13(6):741-756. doi: 10.1007/s12015-017-9759-8 Markmee, R., S. Aungsuchawan, S. Narakornsak, W. Tancharoen, K. Bumrungkit, N. Pangchaidee, P. Pothacharoen, and C. Puaninta. 2017. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte‑like cells. Mol. Med. Rep. 16(5):6068-6076. doi: 10.3892/mmr.2017.7333 Markmee, R., S. Aungsuchawan, W. Tancharoen, S. Narakornsak, and P. Pothacharoen. 2020. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine. Heliyon 6(9):e04844-e04844. doi: 10.1016/j.heliyon.2020.e04844 Marongiu, F., R. Gramignoli, Q. Sun, V. Tahan, T. Miki, K. Dorko, E. Ellis, and S. C. Strom. 2010. Isolation of amniotic mesenchymal stem cells. Curr Protoc Stem Cell Biol Chapter 1:Unit 1E 5. doi: 10.1002/9780470151808.sc01e05s12 Miki, T., T. Lehmann, H. Cai, D. B. Stolz, and S. C. Strom. 2005. Stem cell characteristics of amniotic epithelial cells. Stem Cells 23(10):1549-1559. doi: 10.1634/stemcells.2004-0357 Montesano, A., L. Luzi, P. Senesi, and I. Terruzzi. 2013. Modulation of cell cycle progression by 5-azacytidine is associated with early myogenesis induction in murine myoblasts. Int. J. Biol. Sci. 9(4):391-402. doi: 10.7150/ijbs.4729 Morianos, I., G. Papadopoulou, M. Semitekolou, and G. Xanthou. 2019. Activin-A in the regulation of immunity in health and disease. Journal of Autoimmunity 104:102314. doi: https://doi.org/10.1016/j.jaut.2019.102314 Parolini, O., F. Alviano, G. P. Bagnara, G. Bilic, H. J. Buhring, M. Evangelista, S. Hennerbichler, B. Liu, M. Magatti, N. Mao, T. Miki, F. Marongiu, H. Nakajima, T. Nikaido, C. B. Portmann-Lanz, V. Sankar, M. Soncini, G. Stadler, D. Surbek, T. A. Takahashi, H. Redl, N. Sakuragawa, S. Wolbank, S. Zeisberger, A. Zisch, and S. C. Strom. 2008. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26(2):300-311. doi: 10.1634/stemcells.2007-0594 Pierantozzi, E., B. Gava, I. Manini, F. Roviello, G. Marotta, M. Chiavarelli, and V. Sorrentino. 2011. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells and Development 20(5):915-923. doi: 10.1089/scd.2010.0353 Qian, Q., H. Qian, X. Zhang, W. Zhu, Y. Yan, S. Ye, X. Peng, W. Li, Z. Xu, L. Sun, and W. Xu. 2012. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev 21(1):67-75. doi: 10.1089/scd.2010.0519 Roche, S., M. J. Richard, and M. C. Favrot. 2007. Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. J. Cell Biochem. 101(2):271-280. doi: 10.1002/jcb.21185 Squillaro, T., G. Peluso, and U. Galderisi. 2016. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant. 25(5):829-848. doi: 10.3727/096368915x689622 Thygesen, K., J. S. Alpert, A. S. Jaffe, M. L. Simoons, B. R. Chaitman, and H. D. White. 2012. Third Universal Definition of Myocardial Infarction. Circulation 126(16):2020-2035. doi: doi:10.1161/CIR.0b013e31826e1058 Tseng, A. S., F. B. Engel, and M. T. Keating. 2006. The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem. Biol. 13(9):957-963. doi: 10.1016/j.chembiol.2006.08.004 Tsuji, H., S. Miyoshi, Y. Ikegami, N. Hida, H. Asada, I. Togashi, J. Suzuki, M. Satake, H. Nakamizo, M. Tanaka, T. Mori, K. Segawa, N. Nishiyama, J. Inoue, H. Makino, K. Miyado, S. Ogawa, Y. Yoshimura, and A. Umezawa. 2010. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ. Res. 106(10):1613-1623. doi: 10.1161/CIRCRESAHA.109.205260 Ueno, S., G. Weidinger, T. Osugi, A. D. Kohn, J. L. Golob, L. Pabon, H. Reinecke, R. T. Moon, and C. E. Murry. 2007. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl. Acad. Sci. U S A 104(23):9685-9690. doi: 10.1073/pnas.0702859104 van Wijk, B., A. F. M. Moorman, and M. J. B. van den Hoff. 2007. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovascular Research 74(2):244-255. doi: 10.1016/j.cardiores.2006.11.022 Walther, G., J. Gekas, and O. F. Bertrand. 2009. Amniotic stem cells for cellular cardiomyoplasty: Promises and premises. Catheterization and Cardiovascular Interventions 73(7):917-924. doi: https://doi.org/10.1002/ccd.22016 Wang, I. N. E., X. Wang, X. Ge, J. Anderson, M. Ho, E. Ashley, J. Liu, M. J. Butte, M. Yazawa, R. E. Dolmetsch, T. Quertermous, and P. C. Yang. 2012. Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells. PLOS ONE 7(6):e38328. doi: 10.1371/journal.pone.0038328 Zhao, P., H. Ise, M. Hongo, M. Ota, I. Konishi, and T. Nikaido. 2005. Human Amniotic Mesenchymal Cells Have Some Characteristics of Cardiomyocytes. Transplantation 79(5) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79914 | - |
| dc.description.abstract | "根據世界衛生組織 (World Health Organization) 於2019年的統計,缺血性心臟病 (ischemic heart disease) 已成為全球第一大死因。現今之治療方法仍然無法避免心肌損傷所導致之心臟功能下降,器官短缺也使得缺血性心臟病的後續治療停滯不前。研究指出間葉幹細胞 (mesenchymal stem cells, MSCs) 雖具有複分化潛力及免疫耐受性,已被廣泛應用於幹細胞治療研究,惟體內移植的修復速度較緩慢,無法應付緊急需求,體外分化為心肌細胞有成效不彰之問題,因此本研究擬利用人類羊膜之MSCs (human amnion derived MSCs, hAMSCs) 在體外分化為心肌細胞,並探討其效率及功能。 本研究主要分成二個試驗,試驗一為hAMSCs之分離與培養。羊膜取自亞東醫院剖腹產之婦女,最終分離之細胞在顯微鏡下呈現MSC特有之紡錘狀。細胞表面抗原分析結果顯示這些細胞會表現人類MSCs應表現之CD105, CD73, CD90, CD44;不表現造血細胞相關之CD19,、 CD11b,、 CD34, 、CD45以及HLA-DR,且有部分表現胚幹細胞相關marker,如:SSEA1、SSEA3及SSEA4。並且這些細胞也具有分化成硬骨、軟骨、脂肪細胞的能力,且經RT-PCR分析結果顯示這些細胞會表現多能性相關之Oct4、Nanog及Rex1。前述結果顯示本試驗已從羊膜成功分離出hAMSCs。 試驗二為分化條件測試,本試驗使用BMP4、Activin A、5-azacytidine、CHIR99021及IWP2來做為誘導分化之因子,將這些因子以特定濃度加入hAMSCs之培養液,分別以BMP4/Activin A及其他三種因子的添加與否來將試驗組分為16組,後利用qPCR檢測MLC2v、Nkx2.5及MyoD基因的表現量以探討這些化學分子對心肌細胞分化的影響,結果顯示添加5ng/ml BMP4、10ng/ml Activin A、10μM 5-azacytidine、7.5μM CHIR99021及5μM IWP 2之組別在此三種心肌相關marker中分別具有第二高及最高的表現量(MLC2v:3.82±0.12;Nkx2.5:4.53±0.21;MyoD:6.99±0.66)。此試驗組在後續的免疫染色試驗中顯示有α-actinin及Troponin T的表現。 綜觀上述,本試驗之結果有助於了解hAMSCs在體外分化成心肌細胞之可行性,未來能再深入探討此誘導分化之機制,並進一步改善試驗細節,以期能提高分化效率及功能性,作為治療人類心肌損傷基礎及體外心臟藥物測試之參考。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:30Z (GMT). No. of bitstreams: 1 U0001-2807202118350500.pdf: 3034367 bytes, checksum: 8bacb6a6dc715f863c7d748dd322d847 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 I 摘要 II Abstract IV 目錄 VI Index of figure VII Index of table VIII 第一章-序論 1 第二章-文獻探討 3 2.1 心肌梗塞(myocardial infarction) 3 2.1.1 心肌梗塞之簡介 3 2.1.2現今治療方式 4 2.2 幹細胞治療之潛力 6 2.2.1幹細胞簡介 6 2.2.2 多能性幹細胞在心肌細胞分化上的應用 7 2.2.4人類羊膜間葉幹細胞 (human amniotic membrane-derived MSCs, hAMSCs) 10 2.3 心肌細胞分化 11 2.3.1心肌細胞分化研究及應用 11 2.3.2 Wnt/β-catenin pathway在心肌分化所扮演之角色 12 2.3.3 Bone morphogenetic proteins 4及Activin A對心肌分化的影響 14 2.3.4 5-azacytidine 對心肌分化的影響 17 第三章-試驗內容 18 3.1 人類羊膜間葉幹細胞株之建立 18 3.1.1前言 18 3.1.2 材料與方法 19 3.1.3結果與討論 26 3.2 人類羊膜間葉幹細胞體外心肌分化 34 3.2.1前言 34 3.2.2 材料與方法 35 3.2.3結果與討論 39 第四章-綜合討論 54 第六章-未來展望 56 參考文獻 57 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 心肌細胞 | zh_TW |
| dc.subject | 羊膜間葉幹細胞 | zh_TW |
| dc.subject | 誘導分化 | zh_TW |
| dc.subject | mesenchymal stem cells | en |
| dc.subject | cardiomyocytes | en |
| dc.subject | cardiac differentiation | en |
| dc.subject | Amniotic membrane | en |
| dc.title | 人類羊膜幹細胞體外分化為心肌細胞之可行性評估 | zh_TW |
| dc.title | Assessment of the feasibility of human amniotic membrane stem cell-derived cardiomyocytes in vitro | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳靜宜(Hsin-Tsai Liu),陳銘正(Chih-Yang Tseng),李愛先 | |
| dc.subject.keyword | 羊膜間葉幹細胞,誘導分化,心肌細胞, | zh_TW |
| dc.subject.keyword | Amniotic membrane,mesenchymal stem cells,cardiac differentiation,cardiomyocytes, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202101865 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202118350500.pdf | 2.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
