請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈聖峰(Sheng-Feng Shen) | |
| dc.contributor.author | Yu-Ching Li | en |
| dc.contributor.author | 李憶晴 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:27Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:16:27Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-28 | |
| dc.identifier.citation | Adams, C., T. Ide, J. Barnett, and A. Detges. 2018. Sampling bias in climate–conflict research. Nature Climate Change 8:200-203. Angilletta Jr, M. J. 2006. Estimating and comparing thermal performance curves. Journal of Thermal Biology 31:541-545. Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15:365-377. Chan, S. F., W. K. Shih, A. Y. Chang, S. F. Shen, and I. C. Chen. 2019. Contrasting forms of competition set elevational range limits of species. Ecology Letters 22:1668-1679. Chen, B.-F., M. Liu, D. R. Rubenstein, S.-J. Sun, J.-N. Liu, Y.-H. Lin, and S.-F. Shen. 2020. A chemically triggered transition from conflict to cooperation in burying beetles. Ecology Letters 23:467-475. Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026. Cotter, S. C., and R. M. Kilner. 2010. Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. Journal of Animal Ecology 79:35-43. Fagan, B. 2019, The Little Ice Age: how climate made history 1300-1850, Hachette UK. Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist, and R. D. Holt. 2010. A framework for community interactions under climate change. Trends in ecology evolution 25:325-331. Gleick, P. H. 2014. Water, drought, climate change, and conflict in Syria. Weather, Climate, and Society 6:331-340. Hsiang, S. M., M. Burke, and E. Miguel. 2013. Quantifying the influence of climate on human conflict. Science 341. Jeanette, M., and G. While. 2020. Climate change as a catalyst of social evolution. EcoEvoRxiv:doi:10.32942/osf.io/ndq32946r. Kochhann, D., D. F. Campos, and A. L. Val. 2015. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology 190:54-60. Langmore, N. E., L. D. Bailey, R. G. Heinsohn, A. F. Russell, and R. M. Kilner. 2016. Egg size investment in superb fairy-wrens: helper effects are modulated by climate. Proceedings of the Royal Society B: Biological Sciences 283:20161875. Liu, M., S.-F. Chan, D. R. Rubenstein, S.-J. Sun, B.-F. Chen, and S.-F. Shen. 2020. Ecological transitions in grouping benefits explain the paradox of environmental quality and sociality. The American Naturalist 195:818-832. Mach, K. J., C. M. Kraan, W. N. Adger, H. Buhaug, M. Burke, J. D. Fearon, C. B. Field et al. 2019. Climate as a risk factor for armed conflict. Nature 571:193-197. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm‐Kübler et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12:1969-1976. Pecl, G. T., M. B. Araújo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I.-C. Chen, T. D. Clark et al. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214. Pukowski , E. 1933. Ökologische Untersuchungen an Necrophorus F. Zeitschrift fur Morphologie und Ökologie der Tiere 27:518 – 586. Rozen, D., D. Engelmoer, and P. Smiseth. 2008. Antimicrobial strategies in burying beetles breeding on carrion. Proceedings of the National Academy of Sciences 105:17890-17895. Salehyan, I. 2008. From climate change to conflict? No consensus yet. Journal of Peace Research 45:315-326. Scheffran, J., M. Brzoska, J. Kominek, P. Link, and J. Schilling. 2012. Climate change and violent conflict. Science 336:869-871. Schulte, P. M., T. M. Healy, and N. A. Fangue. 2011. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and comparative biology 51:691-702. Scott, M. P. 1998. The ecology and behavior of burying beetles. Annual Review of Entomology 43:595-618. Shukla, S. P., C. Plata, M. Reichelt, S. Steiger, D. G. Heckel, M. Kaltenpoth, A. Vilcinskas et al. 2018. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proceedings of the National Academy of Sciences 115:11274-11279. Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. Slotsbo, Y. Dong et al. 2016. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters 19:1372-1385. Sun, S.-J., D. R. Rubenstein, B.-F. Chen, S.-F. Chan, J.-N. Liu, M. Liu, W. Hwang et al. 2014. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife 3:e02440. Theisen, O. M., N. P. Gleditsch, and H. Buhaug. 2013. Is climate change a driver of armed conflict? Climatic Change 117:613-625. Tsai, H.-Y., D. R. Rubenstein, B.-F. Chen, M. Liu, S.-F. Chan, D.-P. Chen, S.-J. Sun et al. 2020. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9:e57022. Von Uexkull, N., M. Croicu, H. Fjelde, and H. Buhaug. 2016. Civil conflict sensitivity to growing-season drought. Proceedings of the National Academy of Sciences 113:12391-12396. Wiley, E. M., and A. R. Ridley. 2016. The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour 117:187-195. Zhang, D. D., H. F. Lee, C. Wang, B. Li, Q. Pei, J. Zhang, and Y. An. 2011. The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences 108:17296-17301. Zhang, Z., H. Tian, B. Cazelles, K. L. Kausrud, A. Bräuning, F. Guo, and N. C. Stenseth. 2010. Periodic climate cooling enhanced natural disasters and wars in China during AD 10–1900. Proceedings of the Royal Society B: Biological Sciences 277:3745-3753. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79913 | - |
| dc.description.abstract | 目前已有許多研究表明氣候變遷影響了生物的物候、分布和物種間的交互作用,然而,我們對於氣候變遷如何影響社會生物的合作與衝突行為卻只有非常有限的了解。部分研究結果發現暖化可能促進合作,而另一些研究卻發現暖化可能導致衝突加劇。這些研究結果難以整合成單一的通則,很可能是因為過去的研究多半只考慮了環境因子和社會行為之間的關聯性,而忽略了物種交互作用和資源品質在其中的影響。 我們使用亞洲的埋葬蟲Nicrophorus Nepalensis作為研究物種,用以探討氣候變遷如何影響社會生物。埋葬蟲以小型脊椎動物的屍體作為繁殖的資源,同時面臨其他物種的競爭。埋葬蟲群體間的社會行為會影響處理屍體的效率。我們在不同的溫度下設置一個簡單的迷宮,並且使用經過蛆處理的老鼠屍體作為埋葬蟲的繁殖資源。在蛆蟲的競爭壓力下,埋葬蟲需要清理屍體並且將其拖曳到正確的位置埋葬。我們記錄實驗過程中埋葬蟲的社會行為、屍體移動路徑和繁殖結果,並且分析各項因素之間的影響。 我們的研究發現,環境溫度僅升高1°C就足以改變埋葬蟲的合作行為,以及他們投資在不同任務的優先順位。在較高的溫度下,合作處理屍體可以有效的抵抗來自麗蠅的競爭壓力。然而,這同時對搬運屍體的任務造成了負面影響,因為拖動屍體是一項難以協調合作的任務,參與者越多反而容易阻礙彼此而降低效率。這顯示了暖化影響社會生物的機制比過往研究所討論的更加複雜。因此,暖化對社會生物的影響還需要仔細考量合作行為能夠多有效的解決暖化對資源帶來的挑戰,以及不同任務之間的如何相互影響。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:27Z (GMT). No. of bitstreams: 1 U0001-2807202121185100.pdf: 2344262 bytes, checksum: d71d7b49718ad9042d6773c50913b938 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract ii Contents iv List of figures vi List of tables vii Chapter 1 Introduction 1 Chapter 2 Methods 4 2.1 Lab experiment 4 2.2 Group size setting 5 2.3 Maggot treatment 5 2.4 Burial success and breeding success 5 2.5 Carcass movement trajectory Analysis 6 2.6 Burying beetle behavior analysis 7 2.7 Degree of depilation 8 2.8 Data Analysis 9 Chapter 3 Results 10 3.1 The burial performance with or without inter-specific competition is different 10 3.2 The difficulty of cooperation varies with tasks 10 3.3 The cooperative behavior and the priority of tasks changes with small temperature changes 11 Chapter 4 Discussion 18 References 20 Appendices 24 | |
| dc.language.iso | zh-TW | |
| dc.subject | 社會行為 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 合作生殖 | zh_TW |
| dc.subject | 複雜問題解決 | zh_TW |
| dc.subject | 任務分配 | zh_TW |
| dc.subject | 埋葬蟲 | zh_TW |
| dc.subject | social behavior | en |
| dc.subject | climate change | en |
| dc.subject | burying beetles | en |
| dc.subject | cooperative breeding | en |
| dc.subject | complex problem-solving | en |
| dc.subject | task allocation | en |
| dc.title | 溫度敏感的任務分配決定了一種社會性昆蟲的複雜問題解決 | zh_TW |
| dc.title | Temperature-sensitive task allocation determines the complex problem solving of a social insect species | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王慧瑜(Hsin-Tsai Liu),陳一菁(Chih-Yang Tseng),李壽先 | |
| dc.subject.keyword | 任務分配,複雜問題解決,合作生殖,埋葬蟲,氣候變遷,社會行為, | zh_TW |
| dc.subject.keyword | task allocation,complex problem-solving,cooperative breeding,burying beetles,climate change,social behavior, | en |
| dc.relation.page | 24 | |
| dc.identifier.doi | 10.6342/NTU202101868 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 氣候變遷與永續發展國際學位學程 | zh_TW |
| 顯示於系所單位: | 氣候變遷與永續發展國際學位學程(含碩士班、博士班) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202121185100.pdf | 2.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
