Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許雅儒(Ya-Ju Hsu),吳逸民(Yih-Min Wu)
dc.contributor.authorChi-Hsien Tangen
dc.contributor.author唐啓賢zh_TW
dc.date.accessioned2022-11-23T09:16:25Z-
dc.date.available2021-08-04
dc.date.available2022-11-23T09:16:25Z-
dc.date.copyright2021-08-04
dc.date.issued2021
dc.date.submitted2021-07-29
dc.identifier.citationAlford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S.-Y., Chang, M.-H., Farmer, D. M., Fringer, O. B., Fu, K.-H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., … (David) Tang, T.-Y. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521, 65–69. Barbot, S. (2018). Deformation of a half‐Space from anelastic strain confined in a tetrahedral volume. Bulletin of the Seismological Society of America, 108, 2687–2712. Barbot, S., Fialko, Y., Bock, Y. (2009). Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. Journal of Geophysical Research: Solid Earth, 114, B07405. Barbot, S., Moore, J. D. P., Lambert, V. (2017). Displacement and stress associated with distributed anelastic deformation in a half‐space. Bulletin of the Seismological Society of America, 107, 821–855. Blackwell, D., Richards, M. (2004). Geothermal Map of North America (scale 1:6,500,000). American Association of Petroleum Geologists. Bürgmann, R., Chadwell, D. (2014). Seafloor geodesy. Annual Review of Earth and Planetary Sciences, 42, 509–534. Bürgmann, R., Dresen, G. (2008). Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annual Review of Earth and Planetary Sciences, 36, 531–567. Chang, H., Xu, Z., Yin, B., Hou, Y., Liu, Y., Li, D., Wang, Y., Cao, S., Liu, A. K. (2019). Generation and propagation of M2 internal tides modulated by the Kuroshio northeast of Taiwan. Journal of Geophysical Research: Oceans, 124, 2728–2749. Chen, H.-Y., Ikuta, R., Hsu, Y.-J., Tsujii, T., Ando, M., Tu, Y., Kohmi, T., Takemoto, K., Mizuno, K., Tung, H., Ku, C.-S., Lin, C.-H. (2021). A decade of Global Navigation Satellite System/acoustic measurements of back-arc spreading in the southwestern Okinawa Trough. Frontiers in Earth Science, 9, 601138. Chen, H.-Y., Ikuta, R., Lin, C.-H., Hsu, Y.-J., Kohmi, T., Wang, C.-C., Yu, S.-B., Tu, Y., Tsujii, T., Ando, M. (2018). Back-arc opening in the western end of the Okinawa Trough revealed from GNSS/Acoustic measurements. Geophysical Research Letters, 45, 137–145. DeMets, C., Gordon, R. G., Argus, D. F., Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478. Fletcher, J. M., Teran, O. J., Rockwell, T. K., Oskin, M. E., Hudnut, K. W., Mueller, K. J., Spelz, R. M., Akciz, S. O., Masana, E., Faneros, G., Fielding, E. J., Leprince, S., Morelan, A. E., Stock, J., Lynch, D. K., Elliott, A. J., Gold, P., Liu-Zeng, J., González-Ortega, A., … González-García, J. (2014). Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere, 10, 797–827. Freed, A. M., Herring, T., Bürgmann, R. (2010). Steady-state laboratory flow laws alone fail to explain postseismic observations. Earth and Planetary Science Letters, 300, 1–10. Fujita, M., Ishikawa, T., Mochizuki, M., Sato, M., Toyama, S., Katayama, M., Kawai, K., Matsumoto, Y., Yabuki, T., Asada, A., Colombo, O. L. (2006). GPS/Acoustic seafloor geodetic observation: Method of data analysis and its application. Earth, Planets and Space, 58, 265–275. Fukuda, J., Shimizu, I. (2017). Theoretical derivation of flow laws for quartz dislocation creep: Comparisons with experimental creep data and extrapolation to natural conditions using water fugacity corrections. Journal of Geophysical Research: Solid Earth, 122, 5956–5971. Gagnon, K., Chadwell, C. D., Norabuena, E. (2005). Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature, 434, 205–208. Gleason, G. C., Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247, 1–23. Hauksson, E., Stock, J., Hutton, K., Yang, W., Vidal-Villegas, J. A., Kanamori, H. (2011). The 2010 Mw 7.2 El Mayor-Cucapah earthquake sequence, Baja California, Mexico and southernmost California, USA: Active seismotectonics along the Mexican Pacific Margin. Pure and Applied Geophysics, 168, 1255–1277. Hirth, G., Teyssier, C., Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90, 77–87. Honsho, C., Kido, M. (2017). Comprehensive analysis of traveltime data collected through GPS-Acoustic observation of seafloor crustal movements. Journal of Geophysical Research: Solid Earth, 122, 8583–8599. Honsho, C., Kido, M., Tomita, F., Uchida, N. (2019). Offshore postseismic deformation of the 2011 Tohoku earthquake revisited: Application of an improved GPS-Acoustic positioning method considering horizontal gradient of sound speed structure. Journal of Geophysical Research: Solid Earth, 124, 5990–6009. Hsu, Y.-J., Segall, P., Yu, S.-B., Kuo, L.-C., Williams, C. A. (2007). Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake. Geophysical Journal International, 169, 367–379. Hsu, Y.-J., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., Bock, Y. (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science, 312, 1921–1926. Hu, Y., Bürgmann, R., Freymueller, J. T., Banerjee, P., Wang, K. (2014). Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth, Planets and Space, 66, 106. Huang, T.-Y., Gung, Y., Kuo, B.-Y., Chiao, L.-Y., Chen, Y.-N. (2015). Layered deformation in the Taiwan orogen. Science, 349, 720–723. Iinuma, T., Hino, R., Uchida, N., Nakamura, W., Kido, M., Osada, Y., Miura, S. (2016). Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake. Nature Communications, 7, 13506. Ikuta, R., Tadokoro, K., Ando, M., Okuda, T., Sugimoto, S., Takatani, K., Yada, K., Besana, G. M. (2008). A new GPS-acoustic method for measuring ocean floor crustal deformation: Application to the Nankai Trough. Journal of Geophysical Research, 113, B02401. Jónsson, S., Segall, P., Pedersen, R., Björnsson, G. (2003). Post-earthquake ground movements correlated to pore-pressure transients. Nature, 424, 179–183. Karato, S. (2010). Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review. Tectonophysics, 481, 82–98. Kido, M., Osada, Y., Fujimoto, H. (2008). Temporal variation of sound speed in ocean: A comparison between GPS/acoustic and in situ measurements. Earth, Planets and Space, 60, 229–234. Kuo-Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C.-Y., Huang, B.-S. (2012). Seismic evidence for the α-β quartz transition beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39, L22302. Lee, C.-P., Hirata, N., Huang, B.-S., Huang, W.-G., Tsai, Y.-B. (2010). Evidence of a highly attenuative aseismic zone in the active collision orogen of Taiwan. Tectonophysics, 489, 128–138. Lekic, V., French, S. W., Fischer, K. M. (2011). Lithospheric thinning beneath rifted regions of Southern California. Science, 334, 783–787. Lin, C.-H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324, 189–201. Luan, F. C., Paterson, M. S. (1992). Preparation and deformation of synthetic aggregates of quartz. Journal of Geophysical Research: Solid Earth, 97, 301–320. Masuti, S., Barbot, S. D., Karato, S., Feng, L., Banerjee, P. (2016). Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake. Nature, 538, 373–377. Matsui, R., Kido, M., Niwa, Y., Honsho, C. (2019). Effects of disturbance of seawater excited by internal wave on GNSS-acoustic positioning. Marine Geophysical Research, 40, 541–555. Matsumoto, K., Takanezawa, T., Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. Journal of Oceanography, 56, 567–581. Matsumoto Y., Fujita M., Ishikawa T. (2008). Development of multi-epoch method for determining seafloor station position [in Japanese]. Report of Hydrographic and Oceanographic Researches, 26, 16–22. Moore, J. D. P., Yu, H., Tang, C.-H., Wang, T., Barbot, S., Peng, D., Masuti, S., Dauwels, J., Hsu, Y.-J., Lambert, V., Nanjundiah, P., Wei, S., Lindsey, E., Feng, L., Shibazaki, B. (2017). Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake. Science, 356, 163–167. Moré, J. J., Sorensen, D. C. (1983). Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 4, 553–572. Nikkhoo, M., Walter, T. R. (2015). Triangular dislocation: An analytical, artefact-free solution. Geophysical Journal International, 201, 1119–1141. Niwa, Y., Hibiya, T. (2004). Three-dimensional numerical simulation of M2 internal tides in the East China Sea. Journal of Geophysical Research: Oceans, 109, C04027. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154. Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82, 1018–1040. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117, B04406. Pitzer, K. S., Sterner, S. M. (1994). Equations of state valid continuously from zero to extreme pressures for H2O and CO2. The Journal of Chemical Physics, 101, 3111–3116. Pollitz, F. F. (2003). Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth and Planetary Science Letters, 215, 89–104. Qiu, Q., Moore, J. D. P., Barbot, S., Feng, L., Hill, E. M. (2018). Transient rheology of the Sumatran mantle wedge revealed by a decade of great earthquakes. Nature Communications, 9, 995. Rousset, B., Barbot, S., Avouac, J.-P., Hsu, Y.-J. (2012). Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: Implication for lower-crust rheology. Journal of Geophysical Research: Solid Earth, 117, B12405. Rutter, E. H., Brodie, K. H. (2004). Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. Journal of Structural Geology, 26, 259–270. Rybacki, E., Dresen, G. (2000). Dislocation and diffusion creep of synthetic anorthite aggregates. Journal of Geophysical Research: Solid Earth, 105, 26017–26036. Rybacki, E., Gottschalk, M., Wirth, R., Dresen, G. (2006). Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. Journal of Geophysical Research: Solid Earth, 111, B03203. Sato, M., Fujita, M., Matsumoto, Y., Saito, H., Ishikawa, T., Asakura, T. (2013). Improvement of GPS/acoustic seafloor positioning precision through controlling the ship’s track line. Journal of Geodesy, 87, 825–842. Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., Chen, Y.-G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth, 112, B11405. Spiess, F. N., Chadwell, C. D., Hildebrand, J. A., Young, L. E., Purcell, G. H., Dragert, H. (1998). Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Physics of the Earth and Planetary Interiors, 108, 101–112. Sterner, S. M., Pitzer, K. S. (1994). An equation of state for carbon dioxide valid from zero to extreme pressures. Contributions to Mineralogy and Petrology, 117, 362–374. Sun, T., Wang, K., Iinuma, T., Hino, R., He, J., Fujimoto, H., Kido, M., Osada, Y., Miura, S., Ohta, Y., Hu, Y. (2014). Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature, 514, 84–87. Tang, C.-H., Barbot, S., Hsu, Y.-J., Wu, Y.-M. (2020). Heterogeneous power‐law flow with transient creep in Southern California following the 2010 El Mayor‐Cucapah earthquake. Journal of Geophysical Research: Solid Earth, 125, e2020JB019740. Tang, C.-H., Hsu, Y.-J., Barbot, S., Moore, J. D. P., Chang, W.-L. (2019). Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the 1999 Chi-Chi earthquake. Science Advances, 5, eaav3287. Tape, C., Plesch, A., Shaw, J. H., Gilbert, H. (2012). Estimating a continuous Moho surface for the California Unified Velocity Model. Seismological Research Letters, 83, 728–735. Tomita, F., Kido, M., Ohta, Y., Iinuma, T., Hino, R. (2017). Along-trench variation in seafloor displacements after the 2011 Tohoku earthquake. Science Advances, 3, e1700113. Tsai, C.-J., Andres, M., Jan, S., Mensah, V., Sanford, T. B., Lien, R.-C., Lee, C. M. (2015). Eddy‐Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophysical Research Letters, 42, 8098–8105. Tsang, L. L. H., Hill, E. M., Barbot, S., Qiu, Q., Feng, L., Hermawan, I., Banerjee, P., Natawidjaja, D. H. (2016). Afterslip following the 2007 Mw 8.4 Bengkulu earthquake in Sumatra loaded the 2010 Mw 7.8 Mentawai tsunami earthquake rupture zone. Journal of Geophysical Research: Solid Earth, 121, 9034–9049. Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23, 88–93. Wang, K., Hu, Y., He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484, 327–332. Watanabe, S., Ishikawa, T., Yokota, Y., Nakamura, Y. (2020). GARPOS: Analysis software for the GNSS‐A seafloor positioning with simultaneous estimation of sound speed structure. Frontiers in Earth Science, 8, 597532. Wei, S., Fielding, E., Leprince, S., Sladen, A., Avouac, J.-P., Helmberger, D., Hauksson, E., Chu, R., Simons, M., Hudnut, K., Herring, T., Briggs, R. (2011). Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico. Nature Geoscience, 4, 615–618. Weiss, J. R., Qiu, Q., Barbot, S., Wright, T. J., Foster, J. H., Saunders, A., Brooks, B. A., Bevis, M., Kendrick, E., Ericksen, T. L., Avery, J., Smalley, R., Cimbaro, S. R., Lenzano, L. E., Barón, J., Báez, J. C., Echalar, A. (2019). Illuminating subduction zone rheological properties in the wake of a giant earthquake. Science Advances, 5, eaax6720. Wu, F. T., Chang, C.-S., Wu, Y.-M. (2004). Precisely relocated hypocentres, focal mechanisms and active orogeny in Central Taiwan. Geological Society, London, Special Publications, 226, 333–353. Wu, J.-N., Chiang, H.-T., Chiao, L.-Y., Shyu, C.-T., Liu, C.-S., Wang, Y., Chen, S.-C. (2019). Revisiting the data reduction of seafloor heat-flow measurement: The example of mapping hydrothermal venting site around Yonaguni Knoll IV in the South Okinawa Trough. Tectonophysics, 767, 228159. Yokota, Y., Ishikawa, T. (2020). Shallow slow slip events along the Nankai Trough detected by GNSS-A. Science Advances, 6, eaay5786. Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534, 374–377. Yu, S.-B., Chen, H.-Y., Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41–59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79912-
dc.description.abstract"在地震周期之間,岩石圈內部的應力與應變隨著時間的積累與消散和岩石圈的流變性質息息相關。雖然藉由岩石力學潛變試驗可以了解在實驗室條件之下的岩石流變性質,現地自然條件之下的岩石流變性質仍然需要透過其他方法來加以釐清。有別於實驗室岩石潛變試驗,大地測量學觀測如全球導航衛星系統(Global Navigation Satellite System, GNSS)可以長時間追蹤由大地震同震應力擾動所引起的暫態地殼變形,藉以反推岩石在現地條件下的流變性質。為了模擬大地震後的震後變形,本研究設計了新穎的運動學反演模型,由地表觀測位移同時反算同震斷層面上的震後滑移以及岩石圈中的非彈性應變張量。新方法有別於常見的正演模型,不需要事先決定岩石圈的流變機制或參數,而是利用觀測資料來直接探索岩石圈的流變性質。本研究中採納新方法研究兩個震矩規模大於7的地震所引起的震後變形,分別是1999年臺灣集集地震震後14年的震後變形,以及2010年墨西哥El Mayor Cucapah地震震後8年的震後變形。兩次地震的震後變形皆可以由同震滑移面之延伸上的震後滑移以及下部地殼內的黏彈性變形所解釋。下部地殼的強度在主震過後被立即弱化,並在隨後數年內逐漸增強,有效黏滯係數的變化範圍大約為10^18 Pa s至10^20 Pa s之間。這些模型顯示瞬態潛變(transient creep)、穩態位錯潛變(steady-state dislocation creep)、以及下部地殼流變性質的橫向變化對於震後變形的模式皆扮演了一定的角色。本研究顯示透過大地測量學觀測資料及運動學反演,探索現地岩石圈流變特性之潛力。 在測站空間包覆性良好的狀態之下,大地測量學己經可以對陸地斷層系統及岩石圈流變特性有較佳之約制,但是對於大尺度的隱沒帶構造,例如台灣東北部的琉球及南部的馬尼拉隱沒帶,若沒有海床變形的資料仍然無法窺知全貌。因此,本研究亦分析了中央研究院地球科學研究所在臺灣東北外海蒐集的海底大地測量資料,將臺灣的地殼變形觀測自陸域延伸至海域,為後續隱沒帶相關研究奠立基石。海底大地測量結合動態GNSS和音響測距(GNSS-A)來求取海床相對陸域GNSS參考站之位移。本研究制定了一種非線性反演方法分析2012-2020年於臺灣東北外海的兩個海床測站所蒐集到的觀測資料。兩個海床測站分別為位於沖繩海槽內的OILN,以及位於南澳海盆內的OHUA。結果顯示,OILN相對於澎湖白沙的變形速率為52.3 ± 7.0 mm/yr,方位角為168 ± 7°。OHUA相對於澎湖白沙的變形速率則為45.2 ± 12.2 mm/yr,方位角為219 ± 16°。此外,本研究亦發現兩個測站的海水聲速構造皆具有顯著的週期性振盪,其週期大約為12小時,很可能是由臺灣鄰近海域中盛行的半日內潮所控制。這些分析表明GNSS-A觀測資料不僅能研究海底地殼的變形,亦具備探索海洋物理相關現象的潛力。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:16:25Z (GMT). No. of bitstreams: 1
U0001-2907202102485500.pdf: 28815100 bytes, checksum: 12921397bae68fd2fa13e465844ad90c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………………………………………………………………………………………………I 誌謝……………………………………………………………………………………………………………………………………………………………………………………II 中文摘要……………………………………………………………………………………………………………………………………………………………………………III Abstract…………………………………………………………………………………………………………………………………………………………………………V Contents…………………………………………………………………………………………………………………………………………………………………………VII List of Figures………………………………………………………………………………………………………………………………………………………IX List of Tables…………………………………………………………………………………………………………………………………………………………XI Chapter 1 Introduction……………………………………………………………………………………………………………………………………1 1.1 Motivation……………………………………………………………………………………………………………………………………………………2 1.2 Purpose……………………………………………………………………………………………………………………………………………………………3 1.3 Contents of dissertation………………………………………………………………………………………………………………4 Chapter 2 Rock creep experiments in nature: Exploring rheology in the lithosphere from the postseismic deformation of large earthquakes…………………7 2.1 Methodology…………………………………………………………………………………………………………………………………………………8 2.1.1 GNSS postseismic time series analysis…………………………………………………………………8 2.1.2 Joint kinematic inversion for afterslip and viscoelastic flow…10 2.1.3 Spring-dashpot models……………………………………………………………………………………………………………11 2.2 Case study: Taiwan………………………………………………………………………………………………………………………………13 2.3 Case study: Southern California……………………………………………………………………………………………16 Chapter 3 Seafloor deformation in offshore northeastern Taiwan revealed by GNSS-A measurements……………………………………………………………………………………………………………………………………35 3.1 GNSS-A observations……………………………………………………………………………………………………………………………36 3.1.1 Site OILN……………………………………………………………………………………………………………………………………………37 3.1.2 Site OHUA……………………………………………………………………………………………………………………………………………37 3.2 Seafloor positioning algorithm………………………………………………………………………………………………38 3.2.1 Position of the shipboard transducer……………………………………………………………………38 3.2.2 Rigid seafloor transponder array………………………………………………………………………………39 3.2.3 Acoustic ranging with ray tracing……………………………………………………………………………40 3.2.4 Initial positions of seafloor transponders……………………………………………………41 3.2.5 Time-variant sound speed model……………………………………………………………………………………42 3.3 Results and Discussion……………………………………………………………………………………………………………………43 Chapter 4 Conclusions………………………………………………………………………………………………………………………………………61 Bibliography………………………………………………………………………………………………………………………………………………………………65 Appendix A……………………………………………………………………………………………………………………………………………………………………77 Appendix B……………………………………………………………………………………………………………………………………………………………………91 Appendix C……………………………………………………………………………………………………………………………………………………………………113 Appendix D……………………………………………………………………………………………………………………………………………………………………127
dc.language.isoen
dc.subject內潮zh_TW
dc.subject地震周期zh_TW
dc.subject大地測量zh_TW
dc.subject流變學zh_TW
dc.subject全球導航衛星系統zh_TW
dc.subject海底大地測量zh_TW
dc.subject音響測距zh_TW
dc.subjectSeafloor geodesyen
dc.subjectInternal tidesen
dc.subjectAcoustic rangingen
dc.subjectSeismic cycleen
dc.subjectGeodesyen
dc.subjectRheologyen
dc.subjectGNSSen
dc.title由大地測量探究地震周期間岩石圈之流變性質zh_TW
dc.titleProbing Rheological Properties of the Lithosphere over Seismic Cycles from Geodesyen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-6323-6980
dc.contributor.advisor-orcid許雅儒(0000-0003-1389-9994),吳逸民(0000-0003-4542-1741)
dc.contributor.oralexamcommittee張午龍(Hsin-Tsai Liu),莊昀叡(Chih-Yang Tseng),林玉儂,陳宏宇,許樹坤,王兆璋
dc.subject.keyword地震周期,大地測量,流變學,全球導航衛星系統,海底大地測量,音響測距,內潮,zh_TW
dc.subject.keywordSeismic cycle,Geodesy,Rheology,GNSS,Seafloor geodesy,Acoustic ranging,Internal tides,en
dc.relation.page136
dc.identifier.doi10.6342/NTU202101877
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2907202102485500.pdf28.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved