Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79911
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟(Chung-Chih Wu)
dc.contributor.authorLi-Ying Tsaien
dc.contributor.author蔡俐瑩zh_TW
dc.date.accessioned2022-11-23T09:16:22Z-
dc.date.available2021-08-06
dc.date.available2022-11-23T09:16:22Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-08-02
dc.identifier.citation[1] H. Angus Macleod, Thin-Film Optical Filters, fourth edition, Boca Raton, CRC Press, (2010). [2] 李正中, 材料科學, 薄膜光學與鍍膜技術, 臺北市, 藝軒圖書 (2001). [3] K. -C. Lin, W. -K. Lee, B. -K. Wang, Y. -H. Lin, H. -H. Chen, Y. -H. Song, Y. -H. Huang, L. -W. Shih, C. -C. Wu, Modified distributed Bragg reflector for protecting organic light-emitting diode displays against ultraviolet light, Optics Express, 29, 7654 (2021). [4] K. Yu, X. -Y. Zhou, J. -Q. Wang, J. -J. Xu, J. -J. Yin, A non-polarization short-wave-pass thin film edge filter, Optoelectronics Letters, 10, 0247 (2014). [5] F. Moni, M. Djavid, A. Ghaffari, M. S. Abrishamian, A New Bandstop Filter Based on Photonic Crystals, PIERS Proceedings, 674 (2008). [6] P. R. Villeneuve, S. Fan, J. D. Joannopoulos, Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency, Physical Review B, 54, 7837 (1996). [7] S. Chao, W. -H. Wang, C. -C. Lee, Low-loss dielectric mirror with ion-beam-sputtered TiO_2 -〖 SiO〗_2 mixed films, Applied Optics, 40, 2177 (2001). [8] S. Chao, C. -K. Chang, J. -S. Chen, TiO_2 -〖 SiO〗_2 mixed films prepared by the fast alternating sputter method, Applied Optics, 30, 3233 (1991). [9] P. -Y. Kuei, L. -Z. Hsieh, L. -B. Chang, M. -J. Jeng, R. -M. Lin, On the Reflectivity Spectrum of Implanted AlGaAs Distributed Bragg Reflector, Japanese Journal of Applied Physics, 42, 6319 (2003). [10] Y. -M. Song, E. -S. Choi, J. -S. Yu, Y. -T. Lee, Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures, Optics Express, 17, 20991 (2009). [11] S. Ju, J. -Y. Choi, D. Chae, H. Lim, H. Kang, H. Lee, Fabrication of high-transmittance and low-reflectance meter-scale motheye film via roll-to-roll printing, Nanotechnology, 31, 505301 (2020). [12] M. -C. Kim, S. Jang, J. Choi, S. -M. Kang, M. Choi, Moth‑eye Structured Polydimethylsiloxane Films for High‑Efficiency Perovskite Solar Cells, Nano-Micro Letters, 11, 53 (2019). [13] U. Schulz, U. B. Schallenberg, N. Kaiser, Antireflection coating design for plastic optics, Applied Optics, 41, 3107 (2002). [14] A. N. Abdalgaffar, A. H. Ali, N. A. Jasem, New Construction Stacks for Optimization Designs of Edge Filter, IOSR Journal of Applied Physics, 8, 20 (2016). [15] S. -H. Jeong, J. -K. Kim, B. -S. Kim, S. -H. Shim, B. -T. Lee, Characterization of SiO_2 and TiO_2 filmsprepared using rf magnetron sputtering and their application to anti-reflection coating, Vacuum, 76, 507 (2004). [16] S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, Nanostructured Multilayer Tailored-Refractive- Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics, Applied Physics Express, 4, 052503 (2011). [17] E. Afsharipour, B. Park, C. Shafai, Determination of Reactive RF-Sputtering Parameters for Fabrication of SiOx Films With Specified Refractive Index, for Highly Reflective SiOx Distributed Bragg Reflector, IEEE Photonics Journal, 9, 2700116 (2017). [18] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. k. Kim, E. F. Schubert, Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm, Optics Express, 16, 5290 (2008). [19] P. W. Baumeister, Methods of Altering the Characteristics of a Multilayer Stack, Journal of the Optical Society of America, 52, 1149 (1962). [20] T. W. Hughes, I. A. D. Williamson, M. Minkov, S. Fan, Forward-Mode Differentiation of Maxwell’s Equations, ACS Photonics, 6, 3010 (2019). [21] M. Anaya, A. Rubino, M. E. Calvo, H. Miguez, Solution processed high refractive index contrast distributed Bragg reflectors, Journal of Materials Chemistry C, 4, 4532 (2016). [22] B. Gao, J. P. George, J. Beeckman, K. Neyts, Design, fabrication and characterization of a distributed Bragg reflector for reducing the étendue of a wavelength converting system, Optics Express, 28, 12837 (2020). [23] M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki, M. Hamdi, Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiO2 thin films, Optical Materials, 32, 690 (2010). [24] K. V. Dijk, H. G. Schaeken, J. G. C. Wolke, J. A. Jansen, Influence of annealing temperature on RF’ magnetron sputtered calcium phosphate coatings, Biomaterials, 17, 405 (1996). [25] B. T. Sullivan, J. A. Dobrowolski, Deposition error compensation for optical multilayer coatings. II. Experimental results-sputtering system, Applied Optics, 32, 2351 (1993). [26] B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, High-rate automated deposition system for the manufacture of complex multilayer coatings, Applied Optics, 39, 157 (2000). [27] B. J. Chun, C. K. Hwangbo, Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance, Optics Express, 14, 2473 (2006). [28] I. Lubezky, E. Ceren, Multilayer edge filter for the 3.2-4.9 μm range, Applied Optics, 17, 2648 (1978). [29] J. Weber, H. Bartzsch, P. Frach, Sputter deposition of silicon oxynitride gradient and multilayer coatings, Applied Optics, 47, C288 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79911-
dc.description.abstract"光學薄膜現今已被廣泛應用,從精密的光學儀器至日常生活中的太陽眼鏡皆可見其蹤跡。隨著鍍膜技術的提升,多層膜常用於製作濾波器、抗反射膜等產品,但如何有效的設計可用或需要的多層膜結構依舊是一個困難的挑戰。傳統上而言,可以利用一些已知的結構,如分布式布拉格反射器(distributed Bragg reflector, DBR)或四分之波長之抗反射膜層,然而此種設計只適用於單波長,而無法達成更複雜的應用,有鑑於此本論文將利用梯度法之最佳化演算法來自動化設計光學薄膜之膜層厚度。 在本論文研究的第一部分,我們透過轉移矩陣來計算多層膜結構的穿透係數及反射係數,並定義出合適的目標函數,最後在梯度下降的基礎下引入正向傳播矩陣及反向傳播矩陣以加快梯度計算時間,僅需計算2次轉移矩陣,相較於傳統利用兩點式計算梯度的方法能夠大幅縮短運算時間。 在本論文的第二部分,我們討論如何挑選合適的優化參數,設計出最簡化的薄膜光學結構,並利用RF濺鍍及熱蒸鍍的方式成功做出僅需6-8對高低折射率的高通濾波器,在通帶達到平均穿透度95 % 以上,同時在阻帶達到穿透度接近0 %。此外,在本論文中也利用演算法的方法設計抗反射膜,可以使玻璃基板達到接近透明的程度,在玻璃基板的雙面僅需鍍上2-3對抗反射光學膜,減少介面折射率差所造成的反射,可達到99 % 的高穿透度。最後同時結合高通濾波光學薄膜及抗反射光學薄膜,實做出在通帶可達到穿透度99 %、阻帶低於1 % 之光學元件。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:16:22Z (GMT). No. of bitstreams: 1
U0001-2907202110085100.pdf: 2499428 bytes, checksum: 794ef77f0567a55c68272e79ef5e215e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝…………………………………………………………………………………….Ⅰ 中文摘要……………………………………………………………………………... Ⅲ 英文摘要…………………………………………………………………………..…. Ⅳ 目次…………………………………………………………………………………... Ⅵ 圖目次………………………………………………………………………………... Ⅷ 表目次………………………………………………………………………………... Ⅹ 第一章 緒論………………………………………………………………………….. 1 1.1 薄膜光學簡介……………………………………………………………….. 1 1.2 光學濾波器簡介…………………………………………………………….. 2 1.3 抗反射膜層簡介……………………………………………………………...3 1.4 最優化演算法……………………………………………………………….. 3 1.5 論文架構…………………………………………………………………….. 4 第二章 傳輸矩陣法與薄膜光學結構最佳化……………………………………….. 6 2.1 前言………………………………………………………………………….. 6 2.2 平面波之馬克斯威爾方程式與Fresnel equation………………………….. 6 2.3 轉移矩陣法………………………………………………………………….10 2.4 薄膜光學結構最佳化……………………………………………………… 14 2.4.1 傳播矩陣…………………………………………………………….. 15 2.4.2 目標函數…………………………………………………………….. 17 2.4.3 梯度下降法優化…………………………………………………….. 19 第二章圖表……………………………………………………………………... 21 第三章 最佳化光學薄膜設計及應用……………………………………………… 25 3.1 前言………………………………………………………………………… 25 3.2 薄膜材料選擇……………………………………………………………… 25 3.3 實驗方法…………………………………………………………………… 25 3.4 薄膜量測與特性…………………………………………………………… 27 3.4.1 薄膜厚度量測……………………………………………………….. 27 3.4.2 穿透度量測………………………………………………………….. 28 3.4.3 薄膜特性…………………………………………………………….. 28 3.5 高通濾波器………………………………………………………………… 29 3.5.1 優化條件…………………………………………………………….. 29 3.5.2 結果與討論………………………………………………………….. 30 3.6 高穿透玻璃………………………………………………………………… 31 3.6.1 優化條件…………………………………………………………….. 31 3.6.2 結果與討論………………………………………………………….. 32 第三章圖表……………………………………………………………………... 34 第四章 總結與未來展望…………………………………………………………… 58 4.1 總結………………………………………………………………………… 58 4.2 未來展望…………………………………………………………………… 59 參考資料……………………………………………………………………………… 60
dc.language.isozh-TW
dc.subject傳播矩陣zh_TW
dc.subject射頻濺鍍沉積zh_TW
dc.subject分布式布拉格反射器zh_TW
dc.subject抗反射膜zh_TW
dc.subject梯度優化zh_TW
dc.subject薄膜光學zh_TW
dc.subjectanti-reflection coatingen
dc.subjectRF sputteringen
dc.subjectthin-film opticsen
dc.subjecttransfer matrixen
dc.subjectgradient optimizationen
dc.subjectdistributed Bragg reflectoren
dc.title基於梯度優化演算法之抗反射薄膜與高通光學薄膜濾波器之研究zh_TW
dc.titleDesigns and Implementation of Anti-Reflection Coatings and High-Pass Optical Thin-Film Filters with Gradient Based Optimization Algorithmen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俐吟(Hsin-Tsai Liu),蔡志宏(Chih-Yang Tseng)
dc.subject.keyword薄膜光學,傳播矩陣,梯度優化,抗反射膜,分布式布拉格反射器,射頻濺鍍沉積,zh_TW
dc.subject.keywordthin-film optics,transfer matrix,gradient optimization,anti-reflection coating,distributed Bragg reflector,RF sputtering,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202101880
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2907202110085100.pdf2.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved