Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅凱尹(Kai-Yin Lo)
dc.contributor.authorYi-Ting Yangen
dc.contributor.author楊貽婷zh_TW
dc.date.accessioned2021-05-19T18:01:43Z-
dc.date.available2025-08-03
dc.date.available2021-05-19T18:01:43Z-
dc.date.copyright2015-08-05
dc.date.issued2015
dc.date.submitted2015-08-04
dc.identifier.citationArmache, J.P., Jarasch, A., Anger, A.M., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., et al. (2010). Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proceedings of the National Academy of Sciences of the United States of America 107, 19748-19753.
Ball, S. (2011). Diamond Blackfan anemia. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program 2011, 487-491.
Bassler, J., Grandi, P., Gadal, O., Lessmann, T., Petfalski, E., Tollervey, D., Lechner, J., and Hurt, E. (2001). Identification of a 60S preribosomal particle that is closely linked to nuclear export. Molecular cell 8, 517-529.
Bassler, J., Kallas, M., Pertschy, B., Ulbrich, C., Thoms, M., and Hurt, E. (2010). The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Molecular cell 38, 712-721.
Beck, M., Forster, F., Ecke, M., Plitzko, J.M., Melchior, F., Gerisch, G., Baumeister, W., and Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387-1390.
Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524-1529.
Bobola, N., Jansen, R.P., Shin, T.H., and Nasmyth, K. (1996). Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699-709.
Bohl, F., Kruse, C., Frank, A., Ferring, D., and Jansen, R.P. (2000). She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. The EMBO journal 19, 5514-5524.
Burroughs, L., Woolfrey, A., and Shimamura, A. (2009). Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematology/oncology clinics of North America 23, 233-248.
Chadrin, A., Hess, B., San Roman, M., Gatti, X., Lombard, B., Loew, D., Barral, Y., Palancade, B., and Doye, V. (2010). Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. The Journal of cell biology 189, 795-811.
Chartrand, P., Singer, R.H., and Long, R.M. (2001). RNP localization and transport in yeast. Annual review of cell and developmental biology 17, 297-310.
Cosma, M.P. (2004). Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. EMBO reports 5, 953-957.
Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., and Matunis, M.J. (2002). Proteomic analysis of the mammalian nuclear pore complex. The Journal of cell biology 158, 915-927.
Darzacq, X., Powrie, E., Gu, W., Singer, R.H., and Zenklusen, D. (2003). RNA asymmetric distribution and daughter/mother differentiation in yeast. Current opinion in microbiology 6, 614-620.
De Marchis, M.L., Giorgi, A., Schinina, M.E., Bozzoni, I., and Fatica, A. (2005). Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation. Rna 11, 495-502.
Deng, Y., Singer, R.H., and Gu, W. (2008). Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22, 1037-1050.
Dragon, F., Gallagher, J.E., Compagnone-Post, P.A., Mitchell, B.M., Porwancher, K.A., Wehner, K.A., Wormsley, S., Settlage, R.E., Shabanowitz, J., Osheim, Y., et al. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967-970.
Du, T.G., Jellbauer, S., Muller, M., Schmid, M., Niessing, D., and Jansen, R.P. (2008). Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO reports 9, 781-787.
Ellis, S.R., and Gleizes, P.E. (2011). Diamond Blackfan anemia: ribosomal proteins going rogue. Seminars in hematology 48, 89-96.
Estrada, P., Kim, J., Coleman, J., Walker, L., Dunn, B., Takizawa, P., Novick, P., and Ferro-Novick, S. (2003). Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. The Journal of cell biology 163, 1255-1266.
Fatica, A., Cronshaw, A.D., Dlakic, M., and Tollervey, D. (2002). Ssf1p prevents premature processing of an early pre-60S ribosomal particle. Molecular cell 9, 341-351.
Fatica, A., Oeffinger, M., Dlakic, M., and Tollervey, D. (2003). Nob1p is required for cleavage of the 3' end of 18S rRNA. Molecular and cellular biology 23, 1798-1807.
Fribourg, S., Braun, I.C., Izaurralde, E., and Conti, E. (2001). Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Molecular cell 8, 645-656.
Fribourg, S., and Conti, E. (2003). Structural similarity in the absence of sequence homology of the messenger RNA export factors Mtr2 and p15. EMBO reports 4, 699-703.
Gelperin, D., Horton, L., Beckman, J., Hensold, J., and Lemmon, S.K. (2001). Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. Rna 7, 1268-1283.
Grandi, P., Rybin, V., Bassler, J., Petfalski, E., Strauss, D., Marzioch, M., Schafer, T., Kuster, B., Tschochner, H., Tollervey, D., et al. (2002). 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Molecular cell 10, 105-115.
Granneman, S., Nandineni, M.R., and Baserga, S.J. (2005). The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Molecular and cellular biology 25, 10352-10364.
Greber, B.J., Boehringer, D., Montellese, C., and Ban, N. (2012). Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nature structural & molecular biology 19, 1228-1233.
Gu, W., Deng, Y., Zenklusen, D., and Singer, R.H. (2004). A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18, 1452-1465.
Haarer, B., Viggiano, S., Hibbs, M.A., Troyanskaya, O.G., and Amberg, D.C. (2007). Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes & development 21, 148-159.
Harnpicharnchai, P., Jakovljevic, J., Horsey, E., Miles, T., Roman, J., Rout, M., Meagher, D., Imai, B., Guo, Y., Brame, C.J., et al. (2001). Composition and functional characterization of yeast 66S ribosome assembly intermediates. Molecular cell 8, 505-515.
Herold, A., Suyama, M., Rodrigues, J.P., Braun, I.C., Kutay, U., Carmo-Fonseca, M., Bork, P., and Izaurralde, E. (2000). TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Molecular and cellular biology 20, 8996-9008.
Heym, R.G., and Niessing, D. (2012). Principles of mRNA transport in yeast. Cellular and molecular life sciences : CMLS 69, 1843-1853.
Ho, J.H., and Johnson, A.W. (1999). NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Molecular and cellular biology 19, 2389-2399.
Hoelz, A., Debler, E.W., and Blobel, G. (2011). The structure of the nuclear pore complex. Annual review of biochemistry 80, 613-643.
Holt, C.E., and Bullock, S.L. (2009). Subcellular mRNA localization in animal cells and why it matters. Science 326, 1212-1216.
Holzel, M., Rohrmoser, M., Schlee, M., Grimm, T., Harasim, T., Malamoussi, A., Gruber-Eber, A., Kremmer, E., Hiddemann, W., Bornkamm, G.W., et al. (2005). Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. The Journal of cell biology 170, 367-378.
Horos, R., and von Lindern, M. (2012). Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia. British journal of haematology 159, 514-527.
Horsey, E.W., Jakovljevic, J., Miles, T.D., Harnpicharnchai, P., and Woolford, J.L., Jr. (2004). Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation. Rna 10, 813-827.
Hung, N.J., and Johnson, A.W. (2006). Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol 26, 3718-3727.
Irie, K., Tadauchi, T., Takizawa, P.A., Vale, R.D., Matsumoto, K., and Herskowitz, I. (2002). The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. The EMBO journal 21, 1158-1167.
Jansen, R.P., Dowzer, C., Michaelis, C., Galova, M., and Nasmyth, K. (1996). Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84, 687-697.
Johnson, A.W., Ho, J.H., Kallstrom, G., Trotta, C., Lund, E., Kahan, L., Dahlberg, J., and Hedges, J. (2001). Nuclear export of the large ribosomal subunit. Cold Spring Harbor symposia on quantitative biology 66, 599-605.
Komili, S., Farny, N.G., Roth, F.P., and Silver, P.A. (2007). Functional specificity among ribosomal proteins regulates gene expression. Cell 131, 557-571.
Kressler, D., Roser, D., Pertschy, B., and Hurt, E. (2008). The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. The Journal of cell biology 181, 935-944.
Krogan, N.J., Peng, W.T., Cagney, G., Robinson, M.D., Haw, R., Zhong, G., Guo, X., Zhang, X., Canadien, V., Richards, D.P., et al. (2004). High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell 13, 225-239.
Kruse, C., Jaedicke, A., Beaudouin, J., Bohl, F., Ferring, D., Guttler, T., Ellenberg, J., and Jansen, R.P. (2002). Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p. The Journal of cell biology 159, 971-982.
Lebreton, A., Saveanu, C., Decourty, L., Rain, J.C., Jacquier, A., and Fromont-Racine, M. (2006). A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. The Journal of cell biology 173, 349-360.
Long, R.M., Gu, W., Lorimer, E., Singer, R.H., and Chartrand, P. (2000). She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. The EMBO journal 19, 6592-6601.
Long, R.M., Gu, W., Meng, X., Gonsalvez, G., Singer, R.H., and Chartrand, P. (2001). An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast. The Journal of cell biology 153, 307-318.
Long, R.M., Singer, R.H., Meng, X., Gonzalez, I., Nasmyth, K., and Jansen, R.P. (1997). Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383-387.
Lutzmann, M., Kunze, R., Stangl, K., Stelter, P., Toth, K.F., Bottcher, B., and Hurt, E. (2005). Reconstitution of Nup157 and Nup145N into the Nup84 complex. The Journal of biological chemistry 280, 18442-18451.
Ma, J., Goryaynov, A., Sarma, A., and Yang, W. (2012). Self-regulated viscous channel in the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America 109, 7326-7331.
Martin, K.C., and Ephrussi, A. (2009). mRNA localization: gene expression in the spatial dimension. Cell 136, 719-730.
Matsuo, Y., Granneman, S., Thoms, M., Manikas, R.G., Tollervey, D., and Hurt, E. (2014). Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505, 112-116.
Meignin, C., and Davis, I. (2010). Transmitting the message: intracellular mRNA localization. Current opinion in cell biology 22, 112-119.
Meyer, A.E., Hoover, L.A., and Craig, E.A. (2010). The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. The Journal of biological chemistry 285, 961-968.
Milkereit, P., Gadal, O., Podtelejnikov, A., Trumtel, S., Gas, N., Petfalski, E., Tollervey, D., Mann, M., Hurt, E., and Tschochner, H. (2001). Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell 105, 499-509.
Muller, M., Heym, R.G., Mayer, A., Kramer, K., Schmid, M., Cramer, P., Urlaub, H., Jansen, R.P., and Niessing, D. (2011). A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS biology 9, e1000611.
Ni, L., and Snyder, M. (2001). A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Molecular biology of the cell 12, 2147-2170.
Nissan, T.A., Bassler, J., Petfalski, E., Tollervey, D., and Hurt, E. (2002). 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. The EMBO journal 21, 5539-5547.
Nissan, T.A., Galani, K., Maco, B., Tollervey, D., Aebi, U., and Hurt, E. (2004). A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. Molecular cell 15, 295-301.
Panic, L., Tamarut, S., Sticker-Jantscheff, M., Barkic, M., Solter, D., Uzelac, M., Grabusic, K., and Volarevic, S. (2006). Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Molecular and cellular biology 26, 8880-8891.
Paquin, N., Menade, M., Poirier, G., Donato, D., Drouet, E., and Chartrand, P. (2007). Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol Cell 26, 795-809.
Qiu, C., McCann, K.L., Wine, R.N., Baserga, S.J., and Hall, T.M. (2014). A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization. Proceedings of the National Academy of Sciences of the United States of America 111, 18554-18559.
Ribbeck, K., and Gorlich, D. (2002). The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. The EMBO journal 21, 2664-2671.
Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B.T. (2000). The yeast nuclear pore complex: composition, architecture, and transport mechanism. The Journal of cell biology 148, 635-651.
Santos-Rosa, H., Moreno, H., Simos, G., Segref, A., Fahrenkrog, B., Pante, N., and Hurt, E. (1998). Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Molecular and cellular biology 18, 6826-6838.
Saveanu, C., Bienvenu, D., Namane, A., Gleizes, P.E., Gas, N., Jacquier, A., and Fromont-Racine, M. (2001). Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. The EMBO journal 20, 6475-6484.
Saveanu, C., Namane, A., Gleizes, P.E., Lebreton, A., Rousselle, J.C., Noaillac-Depeyre, J., Gas, N., Jacquier, A., and Fromont-Racine, M. (2003). Sequential protein association with nascent 60S ribosomal particles. Molecular and cellular biology 23, 4449-4460.
Schafer, T., Maco, B., Petfalski, E., Tollervey, D., Bottcher, B., Aebi, U., and Hurt, E. (2006). Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 441, 651-655.
Schafer, T., Strauss, D., Petfalski, E., Tollervey, D., and Hurt, E. (2003). The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. The EMBO journal 22, 1370-1380.
Segref, A., Sharma, K., Doye, V., Hellwig, A., Huber, J., Luhrmann, R., and Hurt, E. (1997). Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. The EMBO journal 16, 3256-3271.
Shahbabian, K., Jeronimo, C., Forget, A., Robert, F., and Chartrand, P. (2014). Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic acids research 42, 8692-8704.
Shen, Z., Paquin, N., Forget, A., and Chartrand, P. (2009). Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 20, 2265-2275.
Sil, A., and Herskowitz, I. (1996). Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84, 711-722.
Simoff, I., Moradi, H., and Nygard, O. (2009). Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae. Current genetics 55, 111-125.
St Johnston, D. (2005). Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6, 363-375.
Steffen, K.K., McCormick, M.A., Pham, K.M., MacKay, V.L., Delaney, J.R., Murakami, C.J., Kaeberlein, M., and Kennedy, B.K. (2012). Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191, 107-118.
Talkish, J., Zhang, J., Jakovljevic, J., Horsey, E.W., and Woolford, J.L., Jr. (2012). Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic acids research 40, 8646-8661.
Tang, L., Sahasranaman, A., Jakovljevic, J., Schleifman, E., and Woolford, J.L., Jr. (2008). Interactions among Ytm1, Erb1, and Nop7 required for assembly of the Nop7-subcomplex in yeast preribosomes. Molecular biology of the cell 19, 2844-2856.
Thomas, F., and Kutay, U. (2003). Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci 116, 2409-2419.
Trotta, C.R., Lund, E., Kahan, L., Johnson, A.W., and Dahlberg, J.E. (2003). Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. The EMBO journal 22, 2841-2851.
Uechi, T., Nakajima, Y., Nakao, A., Torihara, H., Chakraborty, A., Inoue, K., and Kenmochi, N. (2006). Ribosomal protein gene knockdown causes developmental defects in zebrafish. PloS one 1, e37.
Ulbrich, C., Diepholz, M., Bassler, J., Kressler, D., Pertschy, B., Galani, K., Bottcher, B., and Hurt, E. (2009). Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell 138, 911-922.
Urbinati, C.R., Gonsalvez, G.B., Aris, J.P., and Long, R.M. (2006). Loc1p is required for efficient assembly and nuclear export of the 60S ribosomal subunit. Molecular genetics and genomics : MGG 276, 369-377.
Vanrobays, E., Gelugne, J.P., Gleizes, P.E., and Caizergues-Ferrer, M. (2003). Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Molecular and cellular biology 23, 2083-2095.
Venema, J., and Tollervey, D. (1999). Ribosome synthesis in Saccharomyces cerevisiae. Annual review of genetics 33, 261-311.
Vlachos, A., Rosenberg, P.S., Atsidaftos, E., Alter, B.P., and Lipton, J.M. (2012). Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 119, 3815-3819.
Wehner, K.A., and Baserga, S.J. (2002). The sigma(70)-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Molecular cell 9, 329-339.
Wente, S.R., and Rout, M.P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harbor perspectives in biology 2, a000562.
Woolford, J.L., Jr., and Baserga, S.J. (2013). Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643-681.
Xue, S., and Barna, M. (2012). Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature reviews Molecular cell biology 13, 355-369.
Yao, W., Roser, D., Kohler, A., Bradatsch, B., Bassler, J., and Hurt, E. (2007). Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Mol Cell 26, 51-62.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7990-
dc.description.abstract在真核細胞中,Puf6與Loc1同時參與兩條重要的途徑: mRNA之不對稱運輸,以及核醣體生合成。此外,Puf6與Loc1在細胞中主要分布位置皆位於核仁。此兩個蛋白結合ASH1 mRNA,將mRNA運輸至子細胞尖端(bud tip),而mRNA之不對稱分布對於真核細胞之分化相當地重要。另外,Puf6與Loc1也被發現與60S生合成有關聯。若將細胞中PUF6或LOC1移除,pre-rRNA之剪切 (Processing),60S之出核情形,以及60S的生成量皆會受到影響。然而,目前對於Puf6與Loc1之研究大部分是針對ASH1 mRNA運輸之途徑,關於此兩個蛋白如何於60S生合成途徑執行其功能,目前仍尚未明瞭。
在此篇研究中,發現RPL43是puf6∆之High-copy suppressor,以及Puf6、Rpl43與Loc1三個蛋白質之間具有直接的結合,且於60S生合成途徑中的功能有緊密之關聯性。Loc1為Rpl43之伴護子,並和Puf6協助Rpl43結合60S。且Puf6及Loc1需要彼此才能在正確的時間點結合60S。接著,待Puf6與Loc1執行完其功能後,離開60S則需要Rpl43。
zh_TW
dc.description.abstractPuf6 and Loc1 have two important functional roles in the cells, asymmetric mRNA distribution and ribosome biogenesis. Puf6 and Loc1 are localized predominantly in the nucleolus. They bind ASH1 mRNA, repress its translation, and facilitate the transport to the daughter cells. Asymmetric mRNA distribution is important for cell differentiation. Besides, Puf6 and Loc1 have been shown to involve in 60S biogenesis. In puf6∆ or loc1∆ cells, the pre-rRNA processing and 60S export are impaired and 60S subunits are under-accumulated. The functional studies of Puf6 and Loc1 have been focused on ASH1 mRNA pathway, but the functional roles in 60S biogenesis are still not clear.
In this study, we identified that RPL43 is the high-copy suppressor of puf6∆. Besides, Puf6, Loc1 and Rpl43 have direct physical interaction, and these proteins are tightly connected in 60S biogenesis. Loc1 is the chaperon of Rpl43. Loc1 and Puf6 facilitate the loading of Rpl43. Furthermore, Puf6 and Loc1 depend on each other for joining 60S biogenesis pathway properly. Finally, the recruitment of Rpl43 is required for release of Puf6 and Loc1.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:01:43Z (GMT). No. of bitstreams: 1
ntu-104-R02623007-1.pdf: 6599839 bytes, checksum: 8c9827ef18473deef5d31e28b0321d42 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
一、文獻回顧與探討 1
1.1 核醣體生合成 1
1.1.1 rRNA之生成與剪切 1
1.1.2 核醣體之組裝 2
1.1.3 40S之組裝 3
1.1.4 60S之組裝 4
1.1.5細胞核內外物質運輸之調控 5
1.1.6 60S出核之調控 6
1.2 ASH1 mRNA主動運輸 8
1.3與本研究相關之因子 10
二、研究動機與問題 12
三、研究材料與方法 14
3.1 質體之建構 14
3.1.1 PCR 14
3.1.2 電泳 14
3.1.3 純化DNA膠體 14
3.1.4 限制酶切割 14
3.1.5 接合 15
3.1.6 選殖菌體 15
3.2 轉型至啤酒酵母 15
3.3 螢光顯微鏡 15
3.4 生長測試 16
3.5 High-copy suppressor screen 16
3.6核醣體圖譜分析(polysome profile) 16
3.7 Sucrose cushion 17
3.8免疫沉澱 17
3.9 In vitro interaction 18
四、結果 19
4.1 Puf6和Loc1參與60S生合成之階段相似 19
4.2 Puf6與Loc1協助彼此於正確之階段執行功能 21
4.3 於loc1Δ去除PUF6基因可以部分修復loc1Δ突變株之缺失 22
4.4 PUF6之High-copy suppressor為RPL43B 23
4.5 Puf6與Loc1協助Rpl43結合60S 24
4.6 Rpl43、Puf6與Loc1三者之間有直接之結合 26
4.7 Loc1協助Rpl43維持其穩定性 27
4.8 Rpl43幫助Puf6與Loc1離開60S 28
4.9 分析Puf6的功能性區塊 30
4.10 分析Loc1的功能性區塊 32
五、結論 33
六、討論 34
6.1 Rpl43、Loc1與Puf6於60S生合成途徑中之關聯 34
6.2 Puf6與Loc1參與60S生合成之階段 35
6.3 RPL43B無法修復loc1Δ所造成之生長缺失 36
6.4 Puf6於loc1Δ之分布由核仁擴散至細胞核 37
七、參考文獻 38






表目錄
表一、本研究中使用之啤酒酵母菌株 46
表二、本研究中使用之質體 47
















圖目錄
Figure 1. Puf6和Loc1參與60S生合成之階段相似 49
Figure 2. Puf6與Loc1協助彼此於正確之階段執行功能 51
Figure 3. 去除PUF6基因可以部分修復loc1Δ突變株之缺失 53
Figure 4. puf6Δ之High-copy suppressor為RPL43B 54
Figure 5. Puf6與Loc1協助Rpl43結合60S 55
Figure 6. Rpl43、Puf6與Loc1三者之間有直接之結合 56
Figure 7. Loc1協助Rpl43維持其穩定性 57
Figure 8. Rpl43B幫助Puf6與Loc1離開60S 60
Figure 9. 分析Puf6的功能性區塊 64
Figure 10. 分析Loc1的功能性區塊 66











附錄目錄
附錄一、 rRNA加工示意圖 68
附錄二、 ASH1 mRNA主動運輸示意圖 69
附錄三、 60S生合成之不同階段示意圖 70
附錄四、 大量表現RPL43無法修復loc1Δ之生長缺失 71
dc.language.isozh-TW
dc.title探討Puf6與Loc1於核醣體大單元體60S生合成途徑中功能之關聯性zh_TW
dc.titleStudy the Functional Connection between Puf6 and Loc1 in 60S Biogenesisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂俊毅(Jun-Yi Leu),黃偉邦(Wei-Pang Huang),冀宏源(Chi-Hung Yuan),林晉玄(Ching-Hsuan Lin)
dc.subject.keyword核醣體,核醣體生合成,Puf6,Loc1,Rpl43,zh_TW
dc.subject.keywordRibosome,Ribosome biogenesis,Puf6,Loc1,Rpl43,en
dc.relation.page71
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2025-08-03-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  此日期後於網路公開 2025-08-03
6.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved