請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79909完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德(Char-Dir Chung) | |
| dc.contributor.author | Tsung-Yeh Chou | en |
| dc.contributor.author | 周宗曄 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:17Z | - |
| dc.date.available | 2021-08-10 | |
| dc.date.available | 2022-11-23T09:16:17Z | - |
| dc.date.copyright | 2021-08-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-29 | |
| dc.identifier.citation | [1] TIA cdma.2000, Wideband cdmaOne Radio Transmission Technology Proposal: Int.Telecommun. Union, Radiocommun. Study Groups, June 1998. [2] IEEE Std. 802.11b, Part II: Wireless LAN Medium Access Control and Physical Layer Specifications-Higher Speed Physical Layer Extension in the 2.4 GHz Band, 1999. [3] TIA/EIA/IS-95 Interim Std., Mobile Station-Base Station Compatibility Standard for Dual Mode Wideband Spread Spectrum Cellular System, Telecommun. Industry Assoc.,Jul. 1993. [4] China Satellite Navigation Office, BeiDou Navigation Satellite System In Space Interface Control Document, Aug. 2017. [5] Russian Space Systems OJSC, GLONASS Interface Control Document: Open CDMA Navigation Radio Signal in L1 Band. Oct. 2016. [6] European GNSS (Galileo) Open Service, Signal-In-Space Interface Control Document, Jan. 2021. [7] Interface Specification IS-GPS-800, Global Positioning System Wing (GPSW), Sep. 2013. [8] G. Zang and C. Ling, 'Performance evaluation for band-limited DS-CDMA systems based on simplified improved Gaussian approximation,' IEEE Trans. Commun., vol. 51, no. 7, pp. 1204-1213, Jul. 2003. [9] Y. C. Yoon, 'A simple and accurate method of probability of bit error analysis for asynchronous band-limited DS-CDMA systems,' IEEE Trans. Commun., vol. 50, no. 4, pp. 656-663, Apr. 2002. [10] A. F. Molisch, Wireless Communications, Wiley-IEEE Press, 2011. [11] R. Weiler, P. Blunt, M. Unwin, and S. Hodgart, “A direct-conversion receiver for wideband GNSS signals,” Proc. GNSS Signals and Signal Processing Workshop, Toulouse, France, Apr. 2008. [12] A. Niwa, S. Takagi, T. Sato and N. Fuji, 'Novel dc offset cancellation in direct conversion receivers', 2008 3rd Inter. Symp. on Commun. Control and Signal Processing, pp. 584-587, Mar. 2008. [13] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,vol. 44, no. 6, pp. 428-435, Jun. 1997. [14] W. Namgoong and T. H. Meng, 'Direct-conversion RF receiver design,“ IEEE Trans. Commun., vol. 49, no. 3, pp. 518-529, Mar. 2001. [15] V. Mookiah, E. Cetin and A. G. Dempster, “Analysis of performance degradation due to RF ipairments in quadrature bandpass sampling GNSS receivers,” IGNSS Symp., Jul. 2013. [16] L. Noor and A. Anpalagan, “Direct conversion receiver for radio communication systems,” Potentials IEEE, vol. 24, no. 5, pp. 32-35, Dec. 2005. [17] M. C. Valenti, D. Torrieri, and S. Talarico, 'A new analysis of the DSCDMA cellular downlink under spatial constraints,' Proc. IEEE Int. Conf. on Comp., Network. and Commun., pp.425-430, Jan. 2013. [18] D. Torrieri, M. C. Valenti, and S. Talarico, 'An analysis of the DS-CDMA cellular uplink for arbitrary and constrained topologies,' IEEE Trans. Commun., vol. 61, pp. 3318-3326, Aug. 2013. [19] K. S. Zigangirov, Theory of Code Division Multiple Access Communication. Wiley- IEEE Press, 2004. [20] S. Parkvall, “Variability of user performance in cellular DS-CDMA-long versus short spreading sequences,” IEEE Trans. Commun., vol. 48, no. 7, pp. 1178–1187, July 2000. [21] L. L. Hanzo, L.-L. Yang, E.-L. Kuan and K. Yen, Single and Multi-Carrier DS-CDMA: Multi-User Detection, Space-Time Spreading, Synchronisation, Networking and Standards, Wiley-IEEE Press, 2004. [22] D. Kedia, M. Duhan and S. L. Maskara, “Evaluation of correlation properties of orthogonal spreading codes for CDMA wireless mobile communication,” IEEE Int. Advanced Computing Conf., Patiala, India, pp. 325-330, 2010. [23] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems. John Wiley and Sons, 2003. [24] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Inform. Theory, vol. 38, no. 4, pp. 1406-1409, Jul. 1992. [25] C.-C. Lin, W.-C. Chen, and C.-D. Chung, “Spectral sidelobe decaying property of Walsh-Hadamard code in MC-CDMA systems,” IEEE Trans. Wireless Commun., vol. 10, pp. 3151-3157, Oct. 2011. [26] P. Castoldi, Multiuser Detection in CDMA Mobile Terminals. Artech House, 2002. [27] Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000, Recommendation ITU-R M.1225, 1997. [28] Q. M. Rahman and A. B. Sesay, “TSMLE-based MT-CDMA system in Rician fading channel,” IEEE Canadian Conf. on Elect. And Computer Engineering, pp. 1386-1391, May 2002. [29] B. M. Hannah, K. Kubik, R. A. Walker, Geodesy-The Challenge of the 3rd Millennium (Chapter: Propagation Modelling of GPS Signals), Springer Berlin Heidelberg, 2003. [30] M. K. Simon and D. Divsalar, 'Some new twists to problems involving the Gaussian probability integral,' IEEE Trans. on Commun., vol. 46, no. 2, pp. 200-210, Feb. 1998. [31] L.-M. Chen and B.-S. Chen, 'A robust adaptive DFE receiver for DS-CDMA systems under multipath fading channels,“ IEEE Trans. on Signal Processing, vol. 49, no. 7, pp. 1523-1532, July 2001. [32] F. Adachi and T. T. Tjhung, “Tapped delay line model for band-limited multipath channel in DS-CDMA mobile radio”, Electron. Lett., vol. 37, no. 5, pp. 318-319, Mar. 2001. [33] M. Rice, A. Davis and C. Bettweiser, 'Wideband channel model for aeronautical telemetry,“ IEEE Trans. on Aero. and Elec. Systems, vol. 40, pp. 57-69, Jan. 2004. [34] J. Craig, “A new, simple and exact result for calculating error probability for twodimensional signal constellation,” in Proc. 1991 Military Commun. Conf., pp. 571-575, Oct. 1991. [35] C.-D. Chung, W.-C. Chen and W.-L. Lin, “Realizable bandlimited DS-CDMA system occupying Nyqusit bandwidth,” IEEE Commun. Lett., vol. 16, no. 7, pp. 964-967, Jul. 2012. [36] K. S. Zigangirov, Introduction to Cellular Mobile Radio Communication. Wiley-IEEE Press, 2004. [37] A. Mashhour, W. Domino, and N. Beamish, “On the direct conversion receiver—A tutorial.” Microwave J., pp. 114–128, Jun. 2001. [38] D. Y. C. Lie et al., 'A direct-conversionW-CDMA front-end SiGe receiver chip,' Radio Frequency Integrated Circuits Symp., Jun. 2002, pp. 31-34. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79909 | - |
| dc.description.abstract | 除了早期的第三代行動通訊,直接序列分碼多重進接目前在衛星導航與衛星定位系統中仍被廣泛應用。在現行的短碼直接序列分碼多重進接系統中,常使用方波來產生時域限制但頻域無限的展頻訊號,在先前的研究中,為了產生奈奎斯頻寬的短碼直接序列分碼多重進接信號,頻域方波則常被討論與使用,然而,頻域方波的不連續性使得系統無法實現。 另外,在衛星通訊中,直接轉換接收器為一接收器架構,直接轉換接收器嚴重地受到直流偏置影響,在本論文中,藉由對展頻序列提出一項新的限制,找出零直流成分且可實現的脈波成形,此脈波成形可幫助消除直流偏置影響,不會產生失真且可有效率地實現。為了找出適合使用此脈波成形的展頻序列,檢測了數個常用的正交碼以及偽隨機辨識碼並探討其多重存取干擾的影響。此外,兩個奇數碼長的正交碼也在本論文中提出。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:17Z (GMT). No. of bitstreams: 1 U0001-2907202111292800.pdf: 1243734 bytes, checksum: a3209694c6a09087476f6610726b9063 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "摘要 i Abstract ii Contents iii List of Figures vi 1 Introduction 1 1.1 Review of short code DS-CDMA systems . . . . . . . . . . . . . . . . . . . 2 1.2 Direct conversion receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Review of several satellite systems; . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Galileo satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 GLONASS satellites . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 Beidou satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.4 GPS satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis motivation and contributions . . . . . . . . . . . . . . . . . . . . . . 6 2 Signal Model and Constraints 7 2.1 Nyquist-bandwidth short code DS-CDMA signal model . . . . . . . . . . . . 7 2.2 Constraints on codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Realizable Nyquist-bandwidth short code DS-CDMA exhibiting zero-DC signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Transmitter and receiver structure . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.1 Realizable zero-DC transmitter . . . . . . . . . . . . . . . . . . . . . 11 2.4.2 Realizable zero-DC coherent receiver . . . . . . . . . . . . . . . . . 12 3 Codes 16 3.1 Factors affecting choice of spreading codes . . . . . . . . . . . . . . . . . . 17 3.1.1 System capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 Aperiodic autocorrelation . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.3 Aperiodic crosscorrelation . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 System capacity of PN codes . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 System capacity of popular orthogonal codes . . . . . . . . . . . . . . . . . 18 3.3.1 Walsh Hadamard code . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Discrete Fourier transform code . . . . . . . . . . . . . . . . . . . . 19 3.3.3 Chirp-like code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 Orthogonal complementary Golay code . . . . . . . . . . . . . . . . 20 3.4 Two new odd length codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Interleaved dual-DFT (ID-DFT) code . . . . . . . . . . . . . . . . . 21 3.4.2 Zero-extented DFT (ZE-DFT) code . . . . . . . . . . . . . . . . . . 22 3.5 Spreading/despreading implementation complexity . . . . . . . . . . . . . . 22 3.6 Autocorrelation and crosscorrelation comparison for WH, DFT, ZE-DFT, IDDFT and PN code in GLONASS . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Performance in multi-path channel 27 4.1 Channal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Analysis of MPI and MAI . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Derivation of average BER . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.4 BER Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Conclusion and future works 35 Bibliography 37 Appendix A: Proof of Zero System Capacity of OCG Code 42 Appendix B: Derivation of MAI terms 45" | |
| dc.language.iso | en | |
| dc.subject | 多重存取干擾 | zh_TW |
| dc.subject | 直接序列分碼多重進接 | zh_TW |
| dc.subject | 奈奎斯頻寬脈波波形 | zh_TW |
| dc.subject | 正交碼 | zh_TW |
| dc.subject | multiple access interference | en |
| dc.subject | direct-sequence code division multiple access | en |
| dc.subject | Nyquist-bandwidth pulse shaping | en |
| dc.subject | orthogonal codes | en |
| dc.title | 可實現零直流奈奎斯頻寬短碼直接序列分碼多重進接 | zh_TW |
| dc.title | Realizable Nyquist-bandwidth Short Code DS-CDMA Exhibiting Zero-DC | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳維昌(Wei-Chang Chen) | |
| dc.contributor.oralexamcommittee | 蘇炫榮(Hsin-Tsai Liu),古孟霖(Chih-Yang Tseng),王晉良 | |
| dc.subject.keyword | 直接序列分碼多重進接,奈奎斯頻寬脈波波形,正交碼,多重存取干擾, | zh_TW |
| dc.subject.keyword | direct-sequence code division multiple access,Nyquist-bandwidth pulse shaping,orthogonal codes,multiple access interference, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU202101884 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202111292800.pdf | 1.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
