請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌(Shih-Huang Tung) | |
| dc.contributor.author | Kai-Pin Chang | en |
| dc.contributor.author | 張鎧馪 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:15Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:16:15Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-02 | |
| dc.identifier.citation | 1. 陳柏瑜, 製備非溶劑誘導巨孔電紡絲纖維及其吸附行為探討. 臺灣大學高分子科學與工程學研究所學位論文 2017, 1-72. 2. 鐘筱崴, 結合非溶劑誘導相分離與電紡絲技術製備生物可降解孔洞纖維. 臺灣大學高分子科學與工程學研究所學位論文 2017, 1-89. 3. Chen, Y.-R., 探討非溶劑誘導巨孔電紡絲的形成機制與吸附應用. 臺灣大學高分子科學與工程學研究所學位論文 2019, 1-102. 4. Dzenis, Y., Spinning continuous fibers for nanotechnology. Science 2004, 304 (5679), 1917-1919. 5. Luo, C.; Stoyanov, S. D.; Stride, E.; Pelan, E.; Edirisinghe, M., Electrospinning versus fibre production methods: from specifics to technological convergence. Chem. Soc. Rev. 2012, 41 (13), 4708-4735. 6. Mather, R. R., Manufactured Fibre Technology. Chapman and Hall: 1997. 7. Boys, C. V., LVII. On the production, properties, and some suggested uses of the finest threads. London, Edinburgh Dublin Philos. Mag. J. Sci. 1887, 23 (145), 489-499. 8. Xue, J.; Wu, T.; Dai, Y.; Xia, Y., Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019, 119 (8), 5298-5415. 9. Taylor, G. I., Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1969, 313 (1515), 453-475. 10. Taylor, G. I., The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1966, 291 (1425), 145-158. 11. Taylor, G. I., Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1964, 280 (1382), 383-397. 12. Melcher, J.; Taylor, G., Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech 1969, 1 (1), 111-146. 13. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000, 87 (9), 4531-4547. 14. Shin, Y.; Hohman, M.; Brenner, M.; Rutledge, G., Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42 (25), 09955-09967. 15. Agarwal, S.; Wendorff, J. H.; Greiner, A., Use of electrospinning technique for biomedical applications. Polymer 2008, 49 (26), 5603-5621. 16. Gizaw, M.; Thompson, J.; Faglie, A.; Lee, S.-Y.; Neuenschwander, P.; Chou, S.-F., Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications. Bioengineering 2018, 5 (1). 17. Jun, I.; Han, H.-S.; Edwards, J. R.; Jeon, H., Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 2018, 19 (3). 18. Yuan, H.; Zhou, Q.; Zhang, Y., Improving fiber alignment during electrospinning. Electrospun Nanofibers, Afshari, M., Ed. Woodhead Publishing: 2017; pp 125-147. 19. Zhang, R.; Liu, B.; Yang, A.; Zhu, Y.; Liu, C.; Zhou, G.; Sun, J.; Hsu, P.-C.; Zhao, W.; Lin, D.; Liu, Y.; Pei, A.; Xie, J.; Chen, W.; Xu, J.; Jin, Y.; Wu, T.; Huang, X.; Cui, Y., In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Lett. 2018, 18 (2), 1130-1138. 20. Cherian, C. T.; Sundaramurthy, J.; Kalaivani, M.; Ragupathy, P.; Kumar, P. S.; Thavasi, V.; Reddy, M.; Sow, C. H.; Mhaisalkar, S.; Ramakrishna, S., Electrospun α-Fe 2 O 3 nanorods as a stable, high capacity anode material for Li-ion batteries. J. Mater. Chem 2012, 22 (24), 12198-12204. 21. Reneker, D. H.; Yarin, A. L., Electrospinning jets and polymer nanofibers. Polymer 2008, 49 (10), 2387-2425. 22. Huang, C.; Thomas, N., Fabricating porous poly (lactic acid) fibres via electrospinning. Eur. Polym. J. 2018, 99, 464-476. 23. Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001, 89 (5), 3018-3026. 24. Chiu, Y. J.; Tseng, H. F.; Lo, Y. C.; Wu, B. H.; Chen, J. T., Plateau–Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core–Shell Polymer Fibers to Polymer Microbowls. Macromol. Rapid Commun. 2017, 38 (5), 1600689. 25. Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y., Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 2005, 45 (5), 704-709. 26. Haefner, S.; Benzaquen, M.; Bäumchen, O.; Salez, T.; Peters, R.; McGraw, J. D.; Jacobs, K.; Raphaël, E.; Dalnoki-Veress, K., Influence of slip on the Plateau–Rayleigh instability on a fibre. Nat. Commun. 2015, 6 (1), 1-6. 27. Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43 (16), 4403-4412. 28. Hu, J.; Wang, X.; Ding, B.; Lin, J.; Yu, J.; Sun, G., One‐step Electro‐spinning/netting Technique for Controllably Preparing Polyurethane Nano‐fiber/net. Macromol. Rapid Commun. 2011, 32 (21), 1729-1734. 29. Demir, M. M.; Yilgor, I.; Yilgor, E.; Erman, B., Electrospinning of polyurethane fibers. Polymer 2002, 43 (11), 3303-3309. 30. Sarkar, S.; Deevi, S.; Tepper, G., Biased AC electrospinning of aligned polymer nanofibers. Macromol. Rapid Commun. 2007, 28 (9), 1034-1039. 31. Thompson, C.; Chase, G. G.; Yarin, A.; Reneker, D., Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48 (23), 6913-6922. 32. Hardick, O.; Stevens, B.; Bracewell, D. G., Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. J. Mater. Sci. 2011, 46 (11), 3890-3898. 33. Reneker, D. H.; Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7 (3), 216. 34. Yang, G.-Z.; Li, H.-P.; Yang, J.-H.; Wan, J.; Yu, D.-G., Influence of working temperature on the formation of electrospun polymer nanofibers. Nanoscale Res. Lett. 2017, 12 (1), 1-10. 35. Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004, 37 (2), 573-578. 36. Wang, M.; Hsieh, A.; Rutledge, G., Electrospinning of poly (MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer 2005, 46 (10), 3407-3418. 37. Saito, N.; Okada, T.; Horiuchi, H.; Murakami, N.; Takahashi, J.; Nawata, M.; Ota, H.; Nozaki, K.; Takaoka, K., A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 2001, 19 (4), 332-335. 38. Li, P.; Qiao, Y.; Zhao, L.; Yao, D.; Sun, H.; Hou, Y.; Li, S.; Li, Q., Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Mar. Pollut. Bull. 2015, 93 (1-2), 75-80. 39. Kenawy, E.-R.; Layman, J. M.; Watkins, J. R.; Bowlin, G. L.; Matthews, J. A.; Simpson, D. G.; Wnek, G. E., Electrospinning of poly (ethylene-co-vinyl alcohol) fibers. Biomaterials 2003, 24 (6), 907-913. 40. Xu, X.; Zhuang, X.; Chen, X.; Wang, X.; Yang, L.; Jing, X., Preparation of core‐sheath composite nanofibers by emulsion electrospinning. Macromol. Rapid Commun. 2006, 27 (19), 1637-1642. 41. Bazilevsky, A. V.; Yarin, A. L.; Megaridis, C. M., Co-electrospinning of core− shell fibers using a single-nozzle technique. Langmuir 2007, 23 (5), 2311-2314. 42. Zhang, W.; Mele, E., Phase separation events induce the coexistence of distinct nanofeatures in electrospun fibres of poly (ethyl cyanoacrylate) and polycaprolactone. Mater. Today Commun. 2018, 16, 135-141. 43. Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H., Nanostructured fibers via electrospinning. Adv. Mater. 2001, 13 (1), 70-72. 44. Casasola, R.; Thomas, N. L.; Trybala, A.; Georgiadou, S., Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer 2014, 55 (18), 4728-4737. 45. Li, L.; Hashaikeh, R.; Arafat, H. A., Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J. Membr. Sci. 2013, 436, 57-67. 46. Branciforti, M. C.; Custodio, T. A.; Guerrini, L. M.; Avérous, L.; Bretas, R. E. S., Characterization of nano-structured poly (D, L-lactic acid) nonwoven mats obtained from different solutions by electrospinning. J. Macromol. Sci. B 2009, 48 (6), 1222-1240. 47. Laity, P.; Glover, P.; Hay, J., Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 2002, 43 (22), 5827-5837. 48. Ding, J.; Zhang, A.; Bai, H.; Li, L.; Li, J.; Ma, Z., Breath figure in non-aqueous vapor. Soft Matter 2012, 9 (2), 506-514. 49. Lu, P.; Xia, Y., Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 2013, 29 (23), 7070-7078. 50. Demir, M. M.; Horzum, N.; Taşdemirci, A.; Turan, K.; Güden, M., Mechanical interlocking between porous electrospun polystyrene fibers and an epoxy matrix. ACS Appl. Mater. Interfaces 2014, 6 (24), 21901-21905. 51. Zheng, J.; Zhang, H.; Zhao, Z.; Han, C. C., Construction of hierarchical structures by electrospinning or electrospraying. Polymer 2012, 53 (2), 546-554. 52. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35 (22), 8456-8466. 53. Natarajan, L.; New, J.; Dasari, A.; Yu, S.; Manan, M. A., Surface morphology of electrospun PLA fibers: mechanisms of pore formation. RSC Adv. 2014, 4 (83), 44082-44088. 54. Leong, M. F.; Chian, K. S.; Mhaisalkar, P. S.; Ong, W. F.; Ratner, B. D., Effect of electrospun poly (D, L‐lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 89 (4), 1040-1048. 55. Dong, Y.; Kong, J.; Phua, S. L.; Zhao, C.; Thomas, N. L.; Lu, X., Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push–pull effects for moisture wicking. ACS Appl. Mater. Interfaces 2014, 6 (16), 14087-14095. 56. McCann, J. T.; Marquez, M.; Xia, Y., Highly porous fibers by electrospinning into a cryogenic liquid. J. Am. Chem. Soc. 2006, 128 (5), 1436-1437. 57. Ye, X.-Y.; Lin, F.-W.; Huang, X.-J.; Liang, H.-Q.; Xu, Z.-K., Polymer fibers with hierarchically porous structure: combination of high temperature electrospinning and thermally induced phase separation. RSC Adv. 2013, 3 (33), 13851-13858. 58. Huang, C.; Thomas, N. L., Fabrication of porous fibers via electrospinning: strategies and applications. Polym. Rev. 2020, 60 (4), 595-647. 59. Qi, Z.; Yu, H.; Chen, Y.; Zhu, M., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Mater. Lett. 2009, 63 (3-4), 415-418. 60. Chen, P.-Y.; Tung, S.-H., One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules 2017, 50 (6), 2528-2534. 61. Seo, Y.-A.; Pant, H. R.; Nirmala, R.; Lee, J.-H.; Song, K. G.; Kim, H. Y., Fabrication of highly porous poly (ε-caprolactone) microfibers via electrospinning. J. Porous Mater. 2012, 19 (2), 217-223. 62. Bunz, U. H. F., Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006, 18 (8), 973-989. 63. Nayani, K.; Katepalli, H.; Sharma, C. S.; Sharma, A.; Patil, S.; Venkataraghavan, R., Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind. Eng. Chem. Res. 2012, 51 (4), 1761-1766. 64. Miller, K., Siscovick DS1 Sheppard L, Shepherd K, Sullivan JH. Anderson GL, et al. 2007. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356 (51), 447-458. 65. Kampa, M.; Castanas, E., Human health effects of air pollution. Environ. Pollut. 2008, 151 (2), 362-367. 66. Daniels, S. L., On the ionization of air for removal of noxious effluvia (Air ionization of indoor environments for control of volatile and particulate contaminants with nonthermal plasmas generated by dielectric-barrier discharge). IEEE Trans. Plasma Sci. 2002, 30 (4), 1471-1481. 67. Poppendieck, D. G.; Rim, D.; Persily, A. K., Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators. Environ. Sci. Technol. 2014, 48 (3), 2067-2074. 68. Britigan, N.; Alshawa, A.; Nizkorodov, S. A., Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J. Air Waste Manag. Assoc. 2006, 56 (5), 601-610. 69. Mamaghani, A. H.; Haghighat, F.; Lee, C.-S., Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl. Catal. B: Environ. 2017, 203, 247-269. 70. Qi, J.; Li, J.; Li, Y.; Fang, X.; Sun, X.; Shen, J.; Han, W.; Wang, L., Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal. Chem. Eng. J. 2017, 307, 989-998. 71. Choung, J.-H.; Lee, Y.-W.; Choi, D.-K.; Kim, S.-H., Adsorption equilibria of toluene on polymeric adsorbents. J. Chem. Eng. Data 2001, 46 (4), 954-958. 72. Yan, Z.; Tang, S.; Zhou, X.; Yang, L.; Xiao, X.; Chen, H.; Qin, Y.; Sun, W., All-silica zeolites screening for capture of toxic gases from molecular simulation. Chin. J. Chem. Eng. 2019, 27 (1), 174-181. 73. Ebrahim, A. M.; Bandosz, T. J., Ce (III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions. ACS Appl. Mater. Interfaces 2013, 5 (21), 10565-10573. 74. Wang, X.; Kim, K.; Lee, C.; Kim, J., Prediction of air filter efficiency and pressure drop in air filtration media using a stochastic simulation. Fibers Polym. 2008, 9 (1), 34-38. 75. Hung, C.-H.; Leung, W. W.-F., Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep. Purif. Technol. 2011, 79 (1), 34-42. 76. Leung, W. W.-F.; Hung, C.-H., Skin effect in nanofiber filtration of submicron aerosols. Sep. Purif. Technol. 2012, 92, 174-180. 77. Li, P.; Wang, C.; Zhang, Y.; Wei, F., Air filtration in the free molecular flow regime: a review of high‐efficiency particulate air filters based on carbon nanotubes. Small 2014, 10 (22), 4543-4561. 78. Leung, W. W.-F.; Hung, C.-H., Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols. Sep. Purif. Technol. 2008, 63 (3), 691-700. 79. Xu, H.; Jin, W.; Wang, F.; Li, C.; Wang, J.; Zhu, H.; Guo, Y., Preparation and properties of PTFE hollow fiber membranes for the removal of ultrafine particles in PM 2.5 with repetitive usage capability. RSC Adv. 2018, 8 (67), 38245-38258. 80. Liu, C.; Hsu, P.-C.; Lee, H.-W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y., Transparent air filter for high-efficiency PM 2.5 capture. Nat. Commun. 2015, 6 (1), 1-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79908 | - |
| dc.description.abstract | 在靜電紡絲的過程中引入相分離法產生多孔纖維,可以進一步提升其比表面積並增加應用性。然而,受限於溶劑的選擇,高極性的高分子只能紡出緻密的中型孔洞而無法形成巨孔纖維,不過仍有許多應用需要用到高極性材料製成的巨孔纖維,例如空氣懸浮微粒的吸附。為了同時提升極性並產生巨孔纖維,本研究使用包含高、低極性單元的4-乙烯基吡啶-苯乙烯共聚物 (S4VP) 作為材料,並以氯苯 (CB) 與二甲基亞碸 (DMSO) 混和為共溶劑探討其可電紡性與形貌變化。我們發現改變CB/DMSO的比例會使相分離由不同機制主導,包括呼吸圖法 (breath figure)、非溶劑誘導與水蒸氣誘導相分離法,並產生豐富的形貌,例如內外相連的巨孔 (macroporous)、緻密中型孔洞 (mesoporous) 與中空纖維等。為了再提高極性,我們將P4VP混摻到S4VP/CB/DMSO中,不過孔洞形貌也會因此被改變,並且在P4VP量少的時候可以適度增加孔洞尺寸;P4VP較多則會使孔洞合併變成巨大的溝槽或樹洞狀。最後,我們將S4VP/P4VP混摻的巨孔纖維應用於空氣懸浮微粒的吸附。纖維因為同時達到高極性以及巨孔的條件,相較於其他低極性與表面平滑的纖維,吸附速率與三小時內的吸附量有顯著的上升。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:15Z (GMT). No. of bitstreams: 1 U0001-2907202112552800.pdf: 6331817 bytes, checksum: a9a94f60762dafa5ba0f4b7cbd932a7f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1前言 1 1.2研究動機 1 第二章 文獻回顧 3 2.1電紡絲技術介紹 3 2.1.1概述 3 2.1.2電紡過程與原理 3 2.1.3參數條件 7 2.1.4共聚物(Copolymer)與高分子混摻(Polymer blend)之電紡 9 2.2相分離製造孔洞的技術介紹 11 2.2.1Breath Figure法 11 2.2.2蒸氣誘導相分離法(Vapor-Induced Phase Separation) 13 2.2.3熱誘導相分離法(Thermal-Induced Phase Separation) 14 2.2.4非溶劑誘導相分離法(Nonsolvent-Induced Phase Separation) 15 2.3空氣懸浮微粒的吸附 17 2.3.1空氣淨化的方法 17 2.3.2影響吸附過濾效率的因素 17 第三章 實驗方法與儀器 20 3.1實驗材料 20 3.1.1高分子 20 3.1.2溶劑 21 3.1.3鹽類 22 3.2實驗方法 23 3.2.1 S4VP/CB/DMSO三相圖繪製 23 3.2.2 S4VP/P4VP/CB/DMSO三相圖繪製 23 3.2.3電紡流程與參數設定 23 3.2.4纖維截面製備 24 3.2.5纖維直徑、孔洞大小量測 24 3.2.6接觸角測試 25 3.2.7空氣懸浮微粒定時吸附量測試 25 3.2.8空氣懸浮微粒吸附前後形貌觀察 26 3.2.9空氣懸浮微粒吸附速率測試 26 3.3實驗儀器與原理 28 3.3.1場發射掃描式電子顯微鏡 (SEM) 28 3.3.2白金濺鍍機 29 3.3.3接觸角測定器 29 3.3.4分光光譜儀 29 3.3.5熱重分析儀 (TGA) 29 第四章 結果與討論 31 4.1相圖 31 4.2電紡性 33 4.2.1高分子濃度的影響 34 4.2.2 DMSO比例的影響 35 4.3孔洞形貌 37 4.3.1孔洞形成機制 37 4.3.2 DMSO比例的影響 39 4.3.3高分子濃度的影響 46 4.4混摻P4VP的影響 49 4.4.1混摻對相圖的影響 49 4.4.2混摻對電紡性的影響 51 4.4.3混摻對孔洞形貌的影響 53 4.5空氣懸浮微粒過濾之應用 57 4.5.1材料極性與形貌 57 4.5.2吸附量之比較 61 4.5.3吸附速率之比較 68 第五章 結論 72 參考資料 74 附錄 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電紡絲 | zh_TW |
| dc.subject | 多孔纖維 | zh_TW |
| dc.subject | 呼吸圖法 | zh_TW |
| dc.subject | 非溶劑誘導相分離 | zh_TW |
| dc.subject | 水蒸氣誘導相分離 | zh_TW |
| dc.subject | 空氣懸浮微粒吸附 | zh_TW |
| dc.subject | Breath figure | en |
| dc.subject | Vapor-induced phase separation | en |
| dc.subject | Nonsolvent-induced phase separation | en |
| dc.subject | Electrospinning | en |
| dc.subject | Aerosol adsorption | en |
| dc.subject | Porous fibers | en |
| dc.title | 4-乙烯基吡啶-苯乙烯共聚物孔洞纖維的製備以及其在空氣懸浮微粒吸附之應用 | zh_TW |
| dc.title | Preparation of Poly(4-vinylpyridine-co-styrene) Porous Fibers for Aerosol Adsorption | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴偉淇(Hsin-Tsai Liu),楊大毅(Chih-Yang Tseng),邱昱誠 | |
| dc.subject.keyword | 電紡絲,多孔纖維,呼吸圖法,非溶劑誘導相分離,水蒸氣誘導相分離,空氣懸浮微粒吸附, | zh_TW |
| dc.subject.keyword | Electrospinning,Porous fibers,Breath figure,Nonsolvent-induced phase separation,Vapor-induced phase separation,Aerosol adsorption, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202101888 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202112552800.pdf | 6.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
