請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79903完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲(Hao-Che Ho) | |
| dc.contributor.author | Yen-Cheng Lin | en |
| dc.contributor.author | 林彥丞 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:02Z | - |
| dc.date.available | 2021-08-20 | |
| dc.date.available | 2022-11-23T09:16:02Z | - |
| dc.date.copyright | 2021-08-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-30 | |
| dc.identifier.citation | Abdulgafar, M. F. B. (2019). The Smart Flood Detector Using Ultrasonic Sensor With IOT. Adrian, R. J. (1984). Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry. Applied optics, 23(11), 1690-1691. Adrian, R. J. (1986). Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Applied optics, 25(21), 3855-3858. Ahlborn, F. (1902). Über den Mechanismus des hydrodynamischen Widerstandes (Vol. 17). Friederichsen. Andersen, T., Fredsoe, J., Pejrup, M. (2007). In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV). Estuarine, Coastal and Shelf Science, 75(3), 327-336. Bao, Y., Chen, J., Sun, X., Han, X., Li, Y., Zhang, Y., Gu, F., Wang, J. (2019). Debris flow prediction and prevention in reservoir area based on finite volume type shallow-water model: a case study of pumped-storage hydroelectric power station site in Yi County, Hebei, China. Environmental Earth Sciences, 78(19), 1-16. Bathurst, J., Thorne, C., Hey, R. (1977). Direct measurements of secondary currents in river bends. Nature, 269(5628), 504-506. Bradley, A. A., Kruger, A., Meselhe, E. A., Muste, M. V. (2002). Flow measurement in streams using video imagery. Water Resources Research, 38(12), 51-51-51-58. Briers, J. D. (2001). Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiological measurement, 22(4), R35. Brown, W. H., Symons, G. E. (1955). Flow Measurement in Sewage Works: I. Fundamentals. Sewage and Industrial Wastes, 149-156. Buchanan, T. J., Somers, W. P. (1968). Techniques of water-resources investigations of the United States Geological Survey. Burch, J., Tokarski, J. (1968). Production of multiple beam fringes from photographic scatterers. Optica Acta: International Journal of Optics, 15(2), 101-111. Cea, L., Puertas, J., Pena, L. (2007). Velocity measurements on highly turbulent free surface flow using ADV. Experiments in Fluids, 42(3), 333-348. Cebeci, T. (2012). Analysis of turbulent boundary layers. Elsevier. Champagne, F. H., Sleicher, C., Wehrmann, O. (1967). Turbulence measurements with inclined hot-wires Part 1. heat transfer experiments with Inclined hot-wire. Journal of fluid Mechanics, 28(1), 153-175. Chanson, H. (2008). Acoustic Doppler velocimetry (ADV) in the field and in laboratory: practical experiences. Chuang, Y.-J., Chan, H.-C. (2018). Measurements of flow velocity by Using LSPIV with UAV in different flow conditions. AGU Fall Meeting Abstracts, Creutin, J., Muste, M., Li, Z. (2002). Traceless quantitative imaging alternatives for free-surface measurements in natural streams. Hydraulic Measurements and Experimental Methods 2002, De Giorgi, M. G., Ficarella, A., Lay-Ekuakille, A. (2015). Monitoring cavitation regime from pressure and optical sensors: Comparing methods using wavelet decomposition for signal processing. IEEE Sensors Journal, 15(8), 4684-4691. Dermisis, D., Papanicolaou, A. (2005). Determining the 2-D surface velocity field around hydraulic structures with the use of a large scale particle image velocimetry (LSPIV) technique. In Impacts of Global Climate Change (pp. 1-12). Fennema, R. J., Chaudhry, M. H. (1990). Explicit methods for 2-D transient free surface flows. Journal of Hydraulic Engineering, 116(8), 1013-1034. Ferrolino, A., Mendoza, R., Magdalena, I., Lope, J. E. (2020). Application of particle swarm optimization in optimal placement of tsunami sensors. PeerJ Computer Science, 6, e333. Fraccarollo, L., Toro, E. F. (1995). Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. Journal of hydraulic research, 33(6), 843-864. FUJITA, I., KOMURA, S. (1994). Application of video image analysis for measurements of river-surface flows. Proceedings of hydraulic engineering, 38, 733-738. Fujita, I., Muste, M., Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic research, 36(3), 397-414. Goring, D. G., Nikora, V. I. (2002). Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117-126. Guerrero, M., Rüther, N., Szupiany, R., Haun, S., Baranya, S., Latosinski, F. (2016). The acoustic properties of suspended sediment in large rivers: consequences on ADCP methods applicability. Water, 8(1), 13. Guillén, N. F., Patalano, A., García, C. M., Bertoni, J. C. (2017). Use of LSPIV in assessing urban flash flood vulnerability. Natural Hazards, 87(1), 383-394. Holdaway, G. P., Thorne, P. D., Flatt, D., Jones, S. E., Prandle, D. (1999). Comparison between ADCP and transmissometer measurements of suspended sediment concentration. Continental shelf research, 19(3), 421-441. Keane, R. D., Adrian, R. J. (1990). Optimization of particle image velocimeters. I. Double pulsed systems. Measurement science and technology, 1(11), 1202. Keane, R. D., Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied scientific research, 49(3), 191-215. Kim, Y. (2006). Uncertainty analysis for non-intrusive measurement of river discharge using image velocimetry. The University of Iowa. Kinnmark, I. (1986). The Shallow Water Wave Equations: Formulation, Analysis and Application. Kostaschuk, R., Church, M. (1993). Macroturbulence generated by dunes: Fraser River, Canada. Sedimentary Geology, 85(1-4), 25-37. Kowalczyk, M. (1996). Laser speckle velocimetry. Optical Velocimetry, Kraus, N. C., Lohrmann, A., Cabrera, R. (1994). New acoustic meter for measuring 3D laboratory flows. Journal of Hydraulic Engineering, 120(3), 406-412. Lee, K., Ho, H.-C., Marian, M., Wu, C.-H. (2014). Uncertainty in open channel discharge measurements acquired with StreamPro ADCP. Journal of hydrology, 509, 101-114. Levesque, V. A., Oberg, K. A. (2012). Computing discharge using the index velocity method. US Department of the Interior, US Geological Survey. Lewis, Q. W., Lindroth, E. M., Rhoads, B. L. (2018). Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging. Journal of hydrology, 560, 230-246. Liang, S.-J., Tang, J.-H., Wu, M.-S. (2008). Solution of shallow-water equations using least-squares finite-element method. Acta Mechanica Sinica, 24(5), 523-532. Maas, H., Gruen, A., Papantoniou, D. (1993). Particle tracking velocimetry in three-dimensional flows. Experiments in Fluids, 15(2), 133-146. Maidment, D. R. (1993). Handbook of hydrology (Vol. 9780070). McGraw-Hill New York. Martin, V., Fisher, T., Millar, R., Quick, M. (2002). ADV data analysis for turbulent flows: Low correlation problem. Hydraulic Measurements and Experimental Methods 2002, Meselhe, E., Peeva, T., Muste, M. (2004). Large scale particle image velocimetry for low velocity and shallow water flows. Journal of Hydraulic Engineering, 130(9), 937-940. Mesinger, F., Arakawa, A. (1976). Numerical methods used in atmospheric models. Mikuš, P., Harťanský, R. (2013). The Errors in Radar Level Gauge Calibration. Measurement, 27-30. Mueller, D. S., Wagner, C. R., Rehmel, M. S., Oberg, K. A., Rainville, F. (2009). Measuring discharge with acoustic Doppler current profilers from a moving boat. US Department of the Interior, US Geological Survey Reston, Virginia (EUA). Muste, M., Kim, D., González-Castro, J. A. (2010). Near-transducer errors in ADCP measurements: Experimental findings. Journal of Hydraulic Engineering, 136(5), 275-289. Muste, M., Yu, K., Spasojevic, M. (2004). Practical aspects of ADCP data use for quantification of mean river flow characteristics; part I: moving-vessel measurements. Flow measurement and instrumentation, 15(1), 1-16. Nadaoka, K., Kondoh, T. (1982). Laboratory measurements of velocity field structure in the surf zone by LDV. Coastal Engineering in Japan, 25(1), 125-145. Natividad, J., Mendez, J. (2018). Flood Monitoring and Early Warning System Using Ultrasonic Sensor. IOP Conference Series: Materials Science and Engineering, Oberg, K., Mueller, D. S. (1994). Recent applications of acoustic Doppler current profilers. Proceedings of the Symposium on Fundamentals and Advancements in Hydraulic Measurements and Experimentation, Palmer, M. R., Nepf, H. M., Pettersson, T. J., Ackerman, J. D. (2004). Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems. Limnology and Oceanography, 49(1), 76-85. Prandtl, L. (1904). Über Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandl. III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, 484-491. Prandtl, L. (1936). Entstehung von Wirbeln bei Wasserströmungen–1. Entstehung von Wirbeln und künstliche Beeinflussung der Wirbelbildung. Institut für Wissenschaftlichen Film (IWF), Göttingen, C1. Pudjaprasetya, S. R. (2018). Transport Phenomena, equations and numerical methods. Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., Kompenhans, J. (2018). Particle image velocimetry: a practical guide. Springer. Rantz, S. E. (1982). Measurement and computation of streamflow (Vol. 2175). US Department of the Interior, Geological Survey. Schenato, L., Aguilar-López, J. P., Galtarossa, A., Pasuto, A., Bogaard, T., Palmieri, L. (2021). A rugged FBG-based pressure sensor for water level monitoring in dikes. IEEE Sensors Journal. Sinha, S. (1988). Improving the accuracy and resolution of particle image or laser speckle velocimetry. Experiments in Fluids, 6(1), 67-68. Song, T.-c., Graf, W. (1996). Velocity and turbulence distribution in unsteady open-channel flows. Journal of Hydraulic Engineering, 122(3), 141-154. Song, T., Chiew, Y. (2001). Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). Journal of Engineering Mechanics, 127(3), 219-232. Starbird, H. (1922). Measurement of Water Supply by the Pitot Tube in Syracuse, New York. Journal (American Water Works Association), 9(3), 403-407. Steffler, P. M., Rajaratnam, N., Peterson, A. W. (1985). LDA measurements in open channel. Journal of Hydraulic Engineering, 111(1), 119-130. Stelling, G. S., Duinmeijer, S. A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. International journal for numerical methods in fluids, 43(12), 1329-1354. Stephan, U., Wibmer, K. (2001). Experiments on Hydraulic Roughness of Macrophytes. Environmental Hydraulics and Eco-Hydraulics. Proc. Theme B. XXIX IAHR Congr. China, 358-363. TAKEHARA, K., FUJITA, I., TAKANO, Y., ETOH, G. T., AYA, S., TAMAI, M., MIYAMOTO, H., SAKAI, N. (2002). AN ATEMPT OF FIELD MEASUREMENTS OF SURFACE FLOW ON A RIVER BY USING A HELICOPTER AIDED IMAGE VELOCIMETRY. Proceedings of hydraulic engineering, 46, 809-814. Tan, W.-Y. (1992). Shallow water hydrodynamics: Mathematical theory and numerical solution for a two-dimensional system of shallow-water equations. Elsevier. Tauro, F., Pagano, C., Phamduy, P., Grimaldi, S., Porfiri, M. (2015). Large-scale particle image velocimetry from an unmanned aerial vehicle. IEEE/ASME Transactions on Mechatronics, 20(6), 3269-3275. Tsai, T.-M., Yen, P.-H. (2012). Improvement in stage measuring technique of the ultrasonic sensor gauge. Measurement, 45(7), 1735-1741. Westerweel, J., Dabiri, D., Gharib, M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Experiments in Fluids, 23(1), 20-28. White, B. L., Nepf, H. M. (2008). A vortex‐based model of velocity and shear stress in a partially vegetated shallow channel. Water Resources Research, 44(1). White, F. M., Corfield, I. (2006). Viscous fluid flow (Vol. 3). McGraw-Hill New York. Yoon, T. H., Kang, S.-K. (2004). Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Engineering, 130(7), 678-688. Zhang, Z., Wang, X., Fan, T., Xu, L. (2013). River surface target enhancement and background suppression for unseeded LSPIV. Flow measurement and instrumentation, 30, 99-111. Zhou, W. (2002). An alternative leapfrog scheme for surface gravity wave equations. Journal of Atmospheric and Oceanic Technology, 19(9), 1415-1423. 劉德鑄(2010). 聲學多普勒流速測量關鍵技術研究 哈爾濱 哈爾濱工程大學. 範東華、諶業良(2006). 聲學多普勒流速儀 (ADCP)“旁辨” 區數據處理方法的探討. 水道港口, 1. 饒西平(2012). ADCP 測流與傳統測流的對比及應用. 科技資訊, 6, 96. 許盈松、蔡俊鋒、周湘俊、賴建信(2007). 旋杯式與旋槳式流速儀觀測特性分析研究. 中華水土保持學報, 38(2), 185-194. 黃煌煇、林呈(1989). 應用流場可視化法及 LDV 探討斜坡上波動內部流場及底部邊界層之特性. 成功大學水利及海洋工程研所. 經濟部水利署水利規劃試驗所(2011). 「水工模型試驗參考手冊」. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79903 | - |
| dc.description.abstract | "極端氣候、河川坡陡流急與豐枯流量差異甚大的影響之下,台灣的旱澇發生頻率逐年攀升,因此水資源規劃、分配與防災的課題也日顯重要。而水資源規劃管理中,最需要分析的水文資料就是河川流量。近年來,利用非接觸式的方式量測水文資料已經成為主流發展趨勢,如大尺度粒子影像測速法(Large-Scale Particle Image Velocimetry, LSPIV)量測河道表面流速來推估流量。現階段考量到野外多變的環境,為獲得更精準的流量資料,還是透過接觸式的人工量測來獲取資料,如聲學都卜勒流速剖面儀(Acoustic Doppler Current Profiler, ADCP),來取得斷面水深及垂直流速剖面來估算流量。上述的方式除了需要大量人力資源外,在洪水、極端事件的情況之下,更是存在非常高的危險性。因此,發展出非接觸式且高精度的水深量測技術將可以配合粒子影像測速法來有效的估算河川流量。 本研究嘗試用LSPIV技術來測量流體層的深度變化,實驗設置於長27公尺、寬1公尺的室內水槽,模擬3種流況流經5種不同形狀高度之底床構造物。實驗的所有流況都確保是完全發展的均勻流動,且為恆定的亞臨界流,量測用的示蹤粒子則為粒徑均介於0.4-0.5公分的熱塑性橡膠顆粒。研究利用LSPIV所獲取之二維表面流速資料,透過淺水波方程式,且解算的條件符合Courant-Friedrichs-Lewy (CFL)的限制下,在預設的網格中使用蛙跳法(Leap-frog scheme)進行數值分析來反演二維底床高程數據。LSPIV的表面流速資料會用聲學都卜勒測速儀(Acoustic Doppler Velocimetry, ADV)量測數據進行率定驗證,透過本研究反演的底床高程數據則與傳統水尺量測的高程資料進行率定驗證。結果顯示,本研究所提出的量測方法能有效的估算出水槽底床高程的變化,尤其是在淺水時,平均精度可達到90.8%。實驗結果也顯示,非接觸式的影像技術結合淺水波方程式的數值計算來求解水深並獲得流量資料是一種可行的方法。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:02Z (GMT). No. of bitstreams: 1 U0001-2907202116471800.pdf: 6951365 bytes, checksum: 410509b9f9cd78435384e572e4751b92 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I 誌謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIII 第1章 緒論 1 1.1研究動機與目的 1 1.2論文架構 5 第2章 文獻回顧 6 2.1傳統水文量測 6 2.1.1流速量測 6 2.1.2水位量測 12 2.2影像測速 14 2.2.1粒子影像測速法 14 2.2.2大尺度粒子影像測速法 17 2.3淺水波方程式 19 第3章 研究方法 21 3.1實驗環境設置 21 3.1.1水槽設計 21 3.1.2底床構造物設計 22 3.1.3示蹤粒子使用 25 3.1.4都卜勒聲學流速儀 26 3.1.5攝影設備 28 3.2大尺度粒子影像測速法 29 3.2.1正射校正 29 3.2.2影像前處理 30 3.2.3 子圖像設定 31 3.2.4互相關性 32 3.2.5表面流速濾波 33 3.3 影像測深 34 3.3.1淺水波方程式 34 3.3.2蛙跳法 39 3.3.3 Courant-Friedrichs-Lewy(CFL)條件 41 3.4 研究場次概述 42 第4章 研究成果與討論 46 4.1 ADV資料分析結果 46 4.2 PIV分析結果 52 4.2.1子圖像(IA)尺寸之影響 52 4.2.2圖像幀數之影響 56 4.2.3影像測速分析結果 60 4.3 影像測深結果 65 4.3.1網格之影響 65 4.3.2水深之影響 68 4.3.3影像測深分析結果 72 第5章 結論與建議 79 5.1結論 79 5.2建議 80 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 測深法 | zh_TW |
| dc.subject | 大尺度粒子影像測速法 | zh_TW |
| dc.subject | 淺水波方程式 | zh_TW |
| dc.subject | 底床高程 | zh_TW |
| dc.subject | Water depth measurement | en |
| dc.subject | Bathymetry | en |
| dc.subject | Shallow water equations | en |
| dc.subject | LSPIV | en |
| dc.title | 應用影像分析表面流速反演水下地形之研究 | zh_TW |
| dc.title | Application of Image Technique to Obtain Surface Velocity and Bathymetry in Open Channel Flow | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 韓仁毓(Hsin-Tsai Liu),甯方璽(Chih-Yang Tseng) | |
| dc.subject.keyword | 大尺度粒子影像測速法,淺水波方程式,底床高程,測深法, | zh_TW |
| dc.subject.keyword | LSPIV,Shallow water equations,Bathymetry,Water depth measurement, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202101903 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202116471800.pdf | 6.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
