Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79896
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖振鐸(Chen-Tuo Liao)
dc.contributor.authorPo-Chun Liaoen
dc.contributor.author廖柏鈞zh_TW
dc.date.accessioned2022-11-23T09:15:44Z-
dc.date.available2021-08-13
dc.date.available2022-11-23T09:15:44Z-
dc.date.copyright2021-08-13
dc.date.issued2021
dc.date.submitted2021-08-11
dc.identifier.citation[1] T. H. Meuwissen, B. J. Hayes, and M. E. Goddard. Prediction of total genetic value using genome wide dense marker maps.GENETICS, 157(4):1819–1829, 2001. [2] S. Maenhout, B. De Baets, and G. Haesaert. Graph­based data selection for the construction of genomic prediction models.Genetics, 185(4):1463­75, 2010. [3] E. L. Heffner, M. E. Sorrells, and J. L. Jannink. Genomic selection for crop improvement, CropScience, 49(1):1–12, 2009. [4] A. J. Lorenz, K. Smith, and J. L. Jannink. Potential and optimization of genomic selection for fusarium head blight resistance in six­row barley, Crop Science,52(4):1609–1621, 2012. [5] V. Wimmer, C. Lehermeier, T. Albrecht, H. J. Auinger, Y. Wang, and C.C. Schön. Genome wide prediction of traits with different genetic architecture through efficient variable selection.GENETICS, 195(2):573–587, 2013. [6] R. Rincent, D. Laloë, S. Nicolas, T. Altmann, D. Brunel, P. Revilla, V.M. Rodríguez, J. MorenoGonzalez, A. Melchinger, E. Bauer, C­C. Schoen, N. Meyer, C. Giauffret, C. Bauland, P. Jamin, J. Laborde, H. Monod, P. Flament, A. Charcosset, and L. Moreau. Maximizing the Reliability of Genomic Selection by Optimizing the Calibration Set of Reference Individuals: Comparison of Methods in Two Diverse Groups of Maize Inbreds (Zea mays L.), Genetics, 192(2):715–728,2012 [7] D.Akdemir, J. I. Sanchez, and J. L. Jannink. Optimization of genomic selection training populations with a genetic algorithm.Genetics Selection Evolution, 47(1):38,2015. [8] A. Xavier, W. M. Muir, B. Craig, and K. M. Rainey. Walking through the statistical black boxes of plant breeding.Theoretical and Applied Genetics, 129(10):1933–1949, 2016. [9] M. M. Shariati, P. Sørensen, and L. Janss. A two step bayesian approach for genomic prediction of breeding values.BMC Proceedings, 6(2):S12, 2012. [10] C. R. Henderson. Estimation of genetic parameters.Annals of Mathematical Statistics, 21(3):309–310, 1950. [11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm.Journal of the Royal Statistical Society.Series B(Methodology), 39(1):1–38, 1977. [12] S. German and D. German. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984. [13] S. R. Searle and A. I. Khuri. Matrix Algebra Useful for Statistics, chapter 10 and chapter 13,pages 261,355. Wiley, 1982. [14] J. H. Holland. Genetic algorithms and adaptation, NATO Conference Series, 16(1):317–333, 1975. [15] D. Whitley. A genetic algorithm tutorial, Statistics and Computing, 4(2):65–85,1994. [16] D. Akdemir and J. I. Sánchez. Design of training populations for selective phenotyping in genomic prediction, Scientific Reports, 9(1):1446, 2019. [17] R. Rincent, A. Charcosset, and L. Moreau. Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations, Theoretical and Applied Genetics, 130(11):2231–2247, 2017 [18] J. Isidro, J. L. Jannink, D. Akdemir, J. Poland, N. Heslot, and M. E. Sorrells. Training set optimization under population structure in genomic selection, Theoretical and Applied Genetics, 128(1):145–158, 2015. [19] K. Zhao, C. W. Tung, G. C. Eizenga, M. H. Wright, M. L. Ali, A. H. Price, G. J.Norton, M. R. Islam, A. Reynolds, J. Mezey, A. M. McClung, C. D. Bustamante,and S. R. McCouch. Genomewide association mapping reveals a rich genetic architecture of complex traits in oryza sativa, Nature Communications, 2(467), 2011 [20] J. H. Ou and C. T. Liao. Training set determination for genomic selection, Theoretical and Applied Genetics, 132(10):2781–2792, 2019 [21] P. Perez and G. Campos. Genome wide regression and prediction with the bglr statistical package, Genetics, 198(2):483–495, 2014 [22] G. Morota, P. Boddhireddy, N. Vukasinovic, D. Gianola, and S. DeNise. Kernel­based variance component estimation and whole­genome prediction of pre­corrected phenotypes and progeny tests for dairy cow health traits. Front Genet, 5(56):10–3389, 2014
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79896-
dc.description.abstract"雖然次世代定序 (Next Generation Sequencing) 技術目前可協助降低基因型獲得 (genotyping) 的成本,但表現型獲得 (phenotyping) 於育種領域的執行成本上仍是一大考驗。因此,基因體選拔 (genomic selection) 可藉由篩選出使預測準確率最大化的特定訓練集 (training set) 資料來降低該訓練集於表現型獲得所需的成本並建立預測模型。在基因體選拔的 過程中,較佳的訓練集能協助我們建立預測測試集數量性狀較為精準的模型。而從候選集 (candidate set) 篩選對應每組測試集 (testing set) 的最佳訓練集過 程中,本論文各採用以r-score和mspe-score作為目標函數 (objective function) 的基因演算法 (genomic algorithms, GA) 來求之。透過基因演算法選出的訓練集在表現型獲得後,將可用來估計測試集個體的育種價 (genomic estimated breeding values, GEBVs)。基因演算法中採用的目標函數r-score和mspe-score可分別由測試集的表現型值與育種價間的皮爾森相關係數 (Pearson's correlation) 與均方預測誤差 (mean squared prediction error) 推導而得。此外,本論文以Tropical rice和 rice44k兩組資料作為範例,並採用一般常見的皮爾森相關係數及均方根誤差來評估預測模型的準確度;其中,由於rice44k資料的水稻個體共含六種次族群 (subpopulations) 結構,在建模過程除了比較測試集已知及未知外,還需考量次族群的影響。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:15:44Z (GMT). No. of bitstreams: 1
U0001-3007202115234900.pdf: 2132220 bytes, checksum: 1d7f74aa3d1858dea54c8bdd1d510552 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsAcknowledgement(ii) 摘要(iii) Abstract(iv) Contents(v) List of figures(vi) List of tables(ix) Chapter 1 Introduction(1) 1.1 Whole genome regression(1) 1.2 Linear mixed effects model(2) Chapter 2 Methods(6) 2.1 r-score(7) 2.2 mspe-score(9) 2.3 The choice of lambda(10) 2.4 Genetic algorithm(13) Chapter 3 Results(16) 3.1 Real data analysis(18) 3.1.1 Tropical rice data(18) 3.1.2 Rice44K data(21) 3.2 Simulation study(26) 3.2.1 Tropical rice data(27) 3.2.2 Rice44K data(31) Chapter 4 Discussion(41) Chapter 5 Bibliography(45) Apendex A - Source code(49) A.1 Genetic algorithm(49) A.2 Simple exchange algorithm(62) A.3 r-score and mspe-score(71)
dc.language.isoen
dc.subject限制最大概似估值zh_TW
dc.subject基因體選拔zh_TW
dc.subject基因演算法zh_TW
dc.subject全基因組迴歸模式zh_TW
dc.subject線性混合模型zh_TW
dc.subjectgenetic algorithmen
dc.subjectrestricted maximum likelihood estimateen
dc.subjectlinear mixed effects modelen
dc.subjectwhole ­genome regressionen
dc.subjectgenomic selectionen
dc.title基因體選拔中兩種訓練集最佳化準則之比較zh_TW
dc.titleA Comparison of two criteria for training set optimization in genomic selectionen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高振宏(Hsin-Tsai Liu),蔡欣甫(Chih-Yang Tseng)
dc.subject.keyword基因體選拔,基因演算法,全基因組迴歸模式,線性混合模型,限制最大概似估值,zh_TW
dc.subject.keywordgenomic selection,genetic algorithm,whole ­genome regression,linear mixed effects model,restricted maximum likelihood estimate,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202101936
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-3007202115234900.pdf2.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved