請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79864完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊達(Guin-Dar Lin) | |
| dc.contributor.author | Lun-Ping Yuan | en |
| dc.contributor.author | 袁倫評 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:14:24Z | - |
| dc.date.available | 2021-08-23 | |
| dc.date.available | 2022-11-23T09:14:24Z | - |
| dc.date.copyright | 2021-08-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-11 | |
| dc.identifier.citation | Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1):135, 2007. H. J. Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008. Pin-Ju Tsai and Ying-Cheng Chen. Ultrabright, narrowband photonpair source for atomic quantum memories. Quantum Science and Technology, 3(3):034005, 2018. Pin-Ju Tsai. 光子對光源的製備與單光子在原子量子記憶體下的量子儲存. 臺灣大學物理學研究所學位論文, pages 1–153, 2019. Axel Kuhn, Markus Hennrich, and Gerhard Rempe. Deterministic single-photon source for distributed quantum networking. Physical Review Letters, 89(6):067901, 2002. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble. Deterministic generation of single photons from one atom trapped in a cavity. Science, 303(5666):1992–1994, 2004. H G Barros, A Stute, T E Northup, C Russo, P O Schmidt, and R Blatt. Deterministic single-photon source from a single ion. New Journal of Physics, 11(10):103004, 2009. Y. L. A. Rezus, S. G. Walt, R. Lettow, A. Renn, G. Zumofen, S. Götzinger, and V. Sandoghdar. Single-photon spectroscopy of a single molecule. Physical Review Letters, 108(9):093601, 2012. Alessandro Zavatta, Silvia Viciani, and Marco Bellini. Tomographic reconstruction of the single-photon fock state by high-frequency homodyne detection. Physical Review A, 70(5):053821, 2004. Chih-Sung Chuu, G. Y. Yin, and S. E. Harris. A miniature ultrabright source of temporally long, narrowband biphotons. Applied Physics Letters, 101(5):051108, 2012. Matthias Bock, Andreas Lenhard, Christopher Chunnilall, and Christoph Becher. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Optics Express, 24(21):23992–24001, 2016. Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, and Kartik Srinivasan. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 6(5):563–569, 2019. Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Efficient frequency conversion based on resonant four-wave mixing. Optics Letters, 46(3):681–684, 2021. Yan-Cheng Wei, Sheng-Xiang Lin, Pin-Ju Tsai, and Ying-Cheng Chen. Memory-based optical polarization conversion in a double-Λ λ atomic system with degenerate zeeman states. Scientific Reports, 10(1):1–10, 2020. Carsten Langrock, Eleni Diamanti, Rostislav V. Roussev, Yoshihisa Yamamoto, M. M. Fejer, and Hiroki Takesue. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Optics Letters, 30(13):1725–1727, 2005. Sebastian Zaske, Andreas Lenhard, Christian A. Keßler, Jan Kettler, Christian Hepp, Carsten Arend, Roland Albrecht, Wolfgang-Michael Schulz, Michael Jetter, Peter Michler, and Christoph Becher. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Physical Review Letters, 109(14):147404, 2012. Xavier Fernandez-Gonzalvo, Giacomo Corrielli, Boris Albrecht, Marcel. li Grimau, Matteo Cristiani, and Hugues de Riedmatten. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. Optics Express, 21(17):19473–19487, 2013. Boris Albrecht, Pau Farrera, Xavier Fernandez-Gonzalvo, Matteo Cristiani, and Hugues de Riedmatten. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band. Nature Communications, 5(1):1–6, 2014. Anders K. Hansen, Peter E. Andersen, Ole B. Jensen, Bernd Sumpf, Götz Erbert, and Paul M. Petersen. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals. Optics Letters, 40(23):5526–5529, 2015. Helge Rütz, Kai-Hong Luo, Hubertus Suche, and Christine Silberhorn. Quantum frequency conversion between infrared and ultraviolet. Physical Review Applied, 7(2):024021, 2017. Matthias Bock, Pascal Eich, Stephan Kucera, Matthias Kreis, Andreas Lenhard, Christoph Becher, and Jürgen Eschner. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nature Communications, 9(1):1–7, 2018. Nicolas Maring, Dario LagoRivera,Andreas Lenhard, Georg Heinze, and Hugues de Riedmatten. Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band. Optica, 5(5):507–513, 2018. Paulina S. Kuo, Jason S. Pelc, Carsten Langrock, and M. M. Fejer. Using temperature to reduce noise in quantum frequency conversion. Optics Letters, 43(9):2034–2037, 2018. Anaïs Dréau, Anna Tchebotareva, Aboubakr El Mahdaoui, Cristian Bonato, and Ronald Hanson. Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths. Physical Review Applied, 9(6):064031, 2018. Ming-Yang Zheng, Quan Yao, Bin Wang, Xiu-Ping Xie, Qiang Zhang, and Jian-Wei Pan. Integrated multichannel lithium niobate waveguides for quantum frequency conversion. Physical Review Applied, 14(3):034035, 2020. Yong Yu, Fei Ma, Xi-Yu Luo, Bo Jing, Peng-Fei Sun, Ren-Zhou Fang, Chao-Wei Yang, Hui Liu, Ming-Yang Zheng, Xiu-Ping Xie, Wei-Jun Zhang, Li-Xing You, Zhen Wang, Teng-Yun Chen, Qiang Zhang, Xiao-Hui Bao, and Jian-Wei Pan. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578(7794):240–245, 2020. Christopher L. Morrison, Markus Rambach, Zhe Xian Koong, Francesco Graffitti, Fiona Thorburn, Ajoy K. Kar, Yong Ma, Suk-In Park, Jin Dong Song, Nick G. Stoltz, Dirk Bouwmeester, Alessandro Fedrizzi, and Brian D. Gerardot. A bright source of telecom single photons based on quantum frequency conversion. Applied Physics Letters, 118(17):174003, 2021. W. P. Risk and W. J. Kozlovsky. Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator. Optics Letters, 17(10):707–709, 1992. Bruce G. Klappauf, Yannick Bidel, David Wilkowski, Thierry Chaneliere, and Robin Kaiser. Detailed study of an efficient blue laser source by second-harmonic generation in a semimonolithic cavity for the cooling of strontium atoms. Applied Optics, 43(12):2510–2527, 2004. Aiko Samblowski, Christina E. Vollmer, Christoph Baune, Jaromír Fiurášek, and Roman Schnabel. Weak-signal conversion from 1550 to 532 nm with 84% efficiency. Optics Letters, 39(10):2979–2981, 2014. Hugo Kerdoncuff, Jesper B. Christensen, Túlio B. Brasil, Valeriy A. Novikov, Eugene S. Polzik, Jan Hald, and Mikael Lassen. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion efficiency. Optics Express, 28(3):3975–3984, 2020. Nicolas Maring, Pau Farrera, Kutlu Kutluer, Margherita Mazzera, Georg Heinze, and Hugues de Riedmatten. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 551(7681):485–488, 2017. Aaron P. Vandevender and Paul G. Kwiat. High efficiency single photon detection via frequency up-conversion. Journal of Modern Optics, 51(910): 1433–1445, 2004. Guo-Liang Shentu, Jason S. Pelc, Xiao-Dong Wang, Qi-Chao Sun, Ming-Yang Zheng, M. M. Fejer, Qiang Zhang, and Jian-Wei Pan. Ultralow noise up-conversion detector and spectrometer for the telecom band. Optics Express, 21(12):13986–13991, 2013. Zhe-Yu Jeff Ou. Multi-photon quantum interference, volume 43. Springer, 2007. Ulrike Herzog, Matthias Scholz, and Oliver Benson. Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold. Physical Review A, 77(2):023826, 2008. Matthias Scholz, Lars Koch, and Oliver Benson. Analytical treatment of spectral properties and signal–idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Optics Communications, 282(17):3518–3523, 2009. Kai-Hong Luo, Harald Herrmann, Stephan Krapick, Benjamin Brecht, Raimund Ricken, Viktor Quiring, Hubertus Suche, Wolfgang Sohler, and Christine Silberhorn. Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New Journal of Physics, 17(7):073039, 2015. R. Hanbury Brown and R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177(4497):27–29, 1956. Roy J. Glauber. The quantum theory of optical coherence. Physical Review, 130(6):2529, 1963. Leonard Mandel and Emil Wolf. Optical coherence and quantum optics. Cambridge University Press, 1995. Stefano Bettelli. Comment on “coherence measures for heralded single-photon sources'. Physical Review A, 81(3):037801, 2010. Robert W. Boyd. Nonlinear optics. Academic Press, 2020. Prem Kumar. Quantum frequency conversion. Optics Letters, 15(24):1476–1478, 1990. Toshiki Kobayashi, Rikizo Ikuta, Shuto Yasui, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto. Frequency-domain Hong–Ou–Mandel interference. Nature Photonics, 10(7):441–444, 2016. Chih-Sung Chuu and S. E. Harris. Ultrabright backward-wave biphoton source. Physical Review A, 83(6):061803, 2011. Peter C. Strassmann, Anthony Martin, Nicolas Gisin, and Mikael Afzelius. Spectral noise in quantum frequency down-conversion from the visible to the telecommunication C-band. arXiv preprint arXiv:1902.02728, 2019. Yu-Chih Tseng, Yan-Cheng Wei, and Ying-Cheng Chen. Efficient quantum memory for heralded single photons generated by cavity-enhanced spontaneous parametric down-conversion. arXiv preprint arXiv:2011.14948, 2020. Logan W. Clark, Ningyuan Jia, Nathan Schine, Claire Baum, Alexandros Georgakopoulos, and Jonathan Simon. Interacting floquet polaritons. Nature, 571(7766):532–536, 2019. Chin-Wen Chou. Towards a quantum network with atomic ensembles. California Institute of Technology, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79864 | - |
| dc.description.abstract | "單光子,做為一個在量子資訊、網絡裡基礎0 與1 的載體,連接著各個不同的節點以傳遞我們所需要的資訊[1],因為他的量子特性,提供了一個快速且絕對安全通訊環境。而當我們面對一個廣大、需求不同的系統[2],往往面臨到系統A與系統B 能夠接受的光頻率完全不同,此時,就需要一個媒介使得系統A 丟出的光頻率能夠在維持光的其他特性都不變的前提下做出頻率轉換,也就使得系統A與系統B 能夠做資訊交流,而一個量子頻率轉換器正是我們所需要的。在我們的工作中,我們系統性地研究了一個窄頻的780nm 光子經過一週期性極化磷酸氧鈦鉀晶體以及兩面鍍有不同膜所形成的腔體[3,4],並同時打入一852nm 的強光使得此光子能夠藉由和頻產生的過程使得波長轉換至407nm,其中我們的單光子源是藉由相同的腔體所產生的,機制則是自發參數下轉換。藉由分析和頻產生後的光子與歸一化的互關聯方程式g2,我們得出此g2 遠大於古典的上限2,也就證明了在我們的系統中,我們有效地保持了光子的量子特性,而最後我們也確認了當單光子通過轉換後是否仍然是單光子。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:14:24Z (GMT). No. of bitstreams: 1 U0001-0208202119273600.pdf: 5466182 bytes, checksum: 2326c719c17734ae0b4ac9e771ae4b7b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xvii 第一章引言 1 第二章基本理論 5 2.1 自發參數下轉換(SPDC): 單光子源 5 2.1.1 自由空間 6 2.1.2 腔體條件 9 2.1.2.1 單共振腔體 9 2.1.2.2 雙共振系統 13 2.2 同調相關性量測 16 2.2.1 一階同調相關性量測 16 2.2.2 二階同調相關性量測 26 2.2.3 條件性自相關量測 33 2.3 頻率轉換 36 2.3.1 古典頻率轉換 37 2.3.1.1 和頻轉換 38 2.3.1.2 差頻轉換 41 2.3.2 量子頻率轉換 43 2.4 腔內之頻率轉換 45 2.4.1 轉換效率與相位匹配 45 2.4.2 轉換效率與腔體條件 49 2.4.3 單光子頻率轉換 52 第三章實驗架設與方法 57 3.1 第一腔體: 單光子源 58 3.2 第二腔體: 和頻轉換 69 3.2.1 整體光源之轉換 74 第四章結果與討論 79 4.1 第一腔體: 單光子源 79 4.2 第二腔體: 和頻轉換 90 第五章結論與未來發展 103 附錄A — 其他數據 107 A.1 Signal 或Idler 光之自相關量測 107 A.2 Idler 光之條件性自相關量測 108 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 互關聯方程式 | zh_TW |
| dc.subject | 單光子 | zh_TW |
| dc.subject | 量子頻率轉換 | zh_TW |
| dc.subject | 和頻產生 | zh_TW |
| dc.subject | 自發參數下變換 | zh_TW |
| dc.subject | Spontaneous parametric down-conversion | en |
| dc.subject | Cross-correlation function | en |
| dc.subject | Single photon | en |
| dc.subject | Quantum frequency conversion | en |
| dc.subject | Sum frequency generation | en |
| dc.title | 基於非線性晶體於腔體內和頻產生之量子頻率轉換 | zh_TW |
| dc.title | Quantum frequency conversion based on cavity-enhanced sum frequency generation in a nonlinear crystal | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳應誠(Ying-Cheng Chen) | |
| dc.contributor.oralexamcommittee | 陳泳帆(Hsin-Tsai Liu),褚志崧(Chih-Yang Tseng) | |
| dc.subject.keyword | 單光子,量子頻率轉換,和頻產生,自發參數下變換,互關聯方程式, | zh_TW |
| dc.subject.keyword | Single photon,Quantum frequency conversion,Sum frequency generation,Spontaneous parametric down-conversion,Cross-correlation function, | en |
| dc.relation.page | 118 | |
| dc.identifier.doi | 10.6342/NTU202102004 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202119273600.pdf | 5.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
