請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79863完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊明仁(Ming-Jen Yang) | |
| dc.contributor.author | Yu-Lai Chang | en |
| dc.contributor.author | 張玉來 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:14:21Z | - |
| dc.date.available | 2021-08-10 | |
| dc.date.available | 2022-11-23T09:14:21Z | - |
| dc.date.copyright | 2021-08-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-02 | |
| dc.identifier.citation | Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 1979–2013. Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current, J. Atmos. Sci., 4(5), 136-162. Charney, J. G., and Eliassen, A., 1964: On the Growth of the Hurricane Depression, J. Atmos. Sci., 21(1), 68-75. Chen, G. T.-J., and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (mei-yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942–953 ——, and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884–891. ——, Wang, C., and Liu, S. C., 2003: Potential Vorticity Diagnostics of a Mei-Yu Front Case, Mon. Wea. Rev., 131(11), 2680-2696. ——, ——, and Chang, S., 2008: A Diagnostic Case Study of Mei-yu Frontogenesis and Development of Wavelike Frontal Disturbances in the Subtropical Environment, Mon. Wea. Rev., 136(1), 41-61. Chen, J.-M., C.-H. Wu, P.-H. Chung, and C.-H. Sui, 2018: Influence of intraseasonal-interannual oscillations on tropical cyclone genesis in the Western North Pacific. J. Clim., 31, 4949-4961. ——, P.-H. Lin, C.-H. Wu, and C.-H. Sui, 2020: Track variability of South China Sea-formed tropical cyclones modulated by seasonal and intraseasonal circulations. Terr. Atmos. Ocean. Sci., 31, 239-259. Cho, H. R., and G. T. J. Chen, 1995: Mei-Yu frontogenesis. J. Atmos. Sci., 52, 2109–2120. Chou, M.-D. and Suarez, M.J., 1999: A Solar Radiation Parameterization (CLIRAD-SW) Developed at Goddard Climate and Radiation Branch for Atmospheric Studies. NASA Technical Memorandum NASA/TM-1999-104606. ——, M. J. Suarez, X. Z. Liang, and M. M.-H. Yan, 2003: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-2001-104606, Vol. 19, 56 pp. Colle, B. A., B. F. Smull, and M.-J. Yang, 2002: Numerical simulations of a landfalling cold front observed during COAST: Rapid evolution and responsible mechanisms. Mon. Wea. Rev., 130,1945-1966. Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 1859–1881. ——, and ——, 2002: Numerical simulations of the genesis of hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100–1124. ——, and ——, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 2730–2747. ——, 2015: The Formation of Moist Vortices and Tropical Cyclones in Idealized Simulations, J. Atmos. Sci., 72(9), 3499-3516. Eliassen, A., 1962: On the vertical circulation in frontal zones. Geophys. Publ., 24, 147–160. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605 Ertel, H., 1942: ¨Uber hydrodynamischeWirbels¨atze. Physik. Z. (Leipzig), 43, S. 526–529. Ferreira, R. N., and Schubert, W. H., 1997: Barotropic Aspects of ITCZ Breakdown, J. Atmos. Sci., 54(2), 261-285. Frank, W. M., 1977: The Structure and Energetics of the Tropical Cyclone I. Storm Structure, Mon. Wea. Rev., 105(9), 1119-1135. Fu, B., Peng, M. S., Li, T., and Stevens, D. E., 2012: Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part II: Western North Pacific, Mon. Wea. Rev., 140(4), 1067-1080. Gill, A.E., 1980: Some simple solutions for heat‐induced tropical circulation. Q.J.R. Meteorol. Soc., 106, 447-462. Gray, W. M., 1968: Global View of the Origin of Tropical Distrbances and Storms, Mon. Wea. Rev., 96(10), 669-700. ——, 1975: Tropical cyclone genesis. Dept. of Atmos. Sci. Paper No. 234, Colo. State Univ., Ft. Collins, CO, 121 pp. ——, 1979: Hurricanes: their formation, structure and likely role in the tropical circulation. Supplement of Meteorology Over the Tropical Oceans. Published by RMS, James Glaisher House, Grenville Place, Bracknell, Berkshire, RG 12 1BX, D. B. Shaw, ed., 155-218. ——, 1998: The formation of tropical cyclones. Meteorl. Atmos. Phys. 67, 37–69 Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci. 50,3380-3403. Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of“vortical” hot towers in the formation of tropical cyclone Diana (1984), J. Atmos. Sci., 61, 1209–1232. ——, Peng, M. S., Fu, B., and Li, T., 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change, Mon. Wea. Rev., 138(8), 3243-3271. Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 683-535 pp. Hong, S., and Pan, H., 1996: Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model, Mon. Wea. Rev., 124(10), 2322-2339. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946. Kikuchi, K., and Wang, B., 2009: Global Perspective of the Quasi-Biweekly Oscillation, J. Clim., 22(6), 1340-1359. Kuo, H., 1949: Dynamic Instability of Two-Dimensional Nondivergent flow in a Barotopic Atmosphere, J. Atmos. Sci., 6(2), 105-122. Kuo, H.-C. and C.-H. Horng, 1994: A Study of Finite Amplitude Barotropic Instability. Terr. Atmos. Ocean. Sci., 5, 199-243. Kuo, Y. H., and R. A. Anthes, 1982: Numerical simulation of a Mei-Yu system over southeastern Asia. Pap. Meteor. Res., 5, 15–36. Lee, C., Y. Lin, and K. K. W. Cheung, 2006: Tropical Cyclone Formations in the South China Sea Associated with the Mei-Yu Front. Mon. Wea. Rev., 134, 2670–2687. ——, —— and C. -M. Huang, 2008: Tropical Cyclone Formations in the South China Sea. Paper presented at the 28th Conference on Hurricanes and Tropical Meteorology, 28 April - 2 May, Florida Lim, K. S., and Hong, S. 2010: Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models, Mon. Wea. Rev., 138(5), 1587-1612. Matsumoto, S., 1972: Unbalanced low-level jet and solenoidal circulation associated with heavy rainfalls. J. Meteor. Soc. Japan, 50, 194–203. Matsuno, T., 1966 Quasi‐geostrophic motions in the equatorial area, J. Met. Soc. Japan, 44, 25–43. Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169–171. Montgomery, M. T., Nicholls, M. E., Cram, T. A., and Saunders, A. B., 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63(1), 355–386. Montgomegy, M. T., and J. Persing, 2021: Does balance dynamics well capture the secondary circulation and spinup of a simulated hurricane? J. Atmos. Sci., 78, 75-95. Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers? A pilot study, Geophys. Res. Lett., 19, 2401-2404 Petterssen, S. and Smebye, J. 1971. On the development of extratropical cyclones. Q J R Meteorol. Soc. 97, 457–482. Raymond, S. L. Sessions, and C. Lopez Carrillo, 2011: Thermodynamicsof tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101. Sawyer, J.S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc.London, A234, 346-362. Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Q uart . J. R oy. Meteor. Soc., 133, 710 595 605. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., … Powers, J. G. 2008: A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. Smith, L.M. and Waleffe, F., 1999: Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 1608–1622. Stauffer, D. R., and Seaman, N. L. 1990: Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data, Mon. Wea. Rev., 118(6), 1250-1277. Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172-3196. Wei S.-W., and M.-J. Yang, 2015: The Composite Study for Typhoons with Extreme Rainfalls on Taiwan. Atmos. Sci., 43, 233-264. (in Chinese with English abstract) Wheeler, M., and Kiladis, G. N., 1999: Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain, J. Atmos. Sci., 56(3), 374-399. ——, —— and Webster, P. J., 2000: Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves, J. Atmos. Sci., 57(5), 613-640. Yang, M., Wu, Y., and Liou, Y., 2018: The Study of Inland Eyewall Reformation of Typhoon Fanapi (2010) Using Numerical Experiments and Vorticity Budget Analysis. J. Geophys. Res., 123, 9604-9623. Zeng, W., Chen, G., Du, Y., Wen, Z., 2019: Diurnal Variations of Low-Level Winds and Precipitation Response to Large-Scale Circulations during a Heavy Rainfall Event, Mon. Wea. Rev., 147(11), 3981-4004. Zhu, Y., Newell, R. E., 1994: Atmospheric rivers and bombs. Geophys. Res. Lett, 21, 1999–2002. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J-N., 2018: ERA5 hourly data on pressure levels from 1979 to present. Himawari 8/9 gridded data are distributed by Center for Environmental Remote Sensing (CERES), Chiba University, Japan. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79863 | - |
| dc.description.abstract | 在本篇研究中,我們參考Lee et al.(2006)的概念將生成於梅雨鋒面低壓槽的熱帶氣旋定義為鋒面旋生類型並針對其生成機制及其與環境的交互作用進行研究分析。首先,我們透過1979-2018年間的鋒面旋生個案分析大尺度環境場的重要特徵,並利用濾波分析分離出不同時間以及空間尺度的特徵。大尺度環流分析表明:強大的西南氣流、底層豐富的氣旋式渦度以及逐漸減少的環境斜壓性有利於熱帶氣旋在梅雨鋒面低壓槽的西南端生成。透過與合成分析的比較,我們驗證了凱米(2018)的代表性並分析他的渦旋尺度過程以及機制。強大的西南氣流促使鋒面區域產生活躍的對流及強水平風切,鋒面上的正壓不穩定產生擾動並且在鋒面低壓的位渦”滋養”下逐漸增強,覆蓋於其中一個渦旋上的中層短波槽協助中層渦旋的建立,最終此渦旋逐漸發展形成凱米(2018)。除了熱帶氣旋的生成外,伴隨的鋒消也是一個值得討論的現象。在凱米生成前,鋒前覆蓋的對流遮蔽太陽短波輻射導致該區域鋒消,斜壓性的減弱也有助於凱米發展為熱帶氣旋。在凱米生成後,其強大的位渦中心會扭曲破壞鋒面的位渦結構,凱米的次環流又會抑制鋒面對流的發展,使得第二類條件不穩定(CISK)被限制導致更進一步的鋒消。最後,我們提出了一個完整的概念模式解釋熱帶氣旋旋生及梅雨鋒面鋒消的過程及這些天氣系統之間的交互作用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:14:21Z (GMT). No. of bitstreams: 1 U0001-0208202114542700.pdf: 17011293 bytes, checksum: d08b6f48b497b8b984978f1f5862eb89 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of Contents 國立台灣大學碩士學位論文口試委員會審定書 i Acknowledgements ii 摘要 iii Abstract iv Table of Contents vi List of Tables x List of Figures xi Chapter1. Introduction 1 Chapter2. Data and Methods 4 2.1 Data 4 2.2 Definition of frontal-type TC formations 4 2.3 Filtering method 5 2.4 Model description 6 2.5 Budget analysis 7 2.6 The diagnose of Sawyer-Eliassen equation 8 Chapter3. Climatology of frontal-type TC formations 9 3.1 Statistics results 9 3.2 Correlations with intra-seasonal oscillation 9 3.3 Composite analyses of synoptic systems 11 Chapter4. Case overview and Model verification 16 4.1 Gaemi (2018)’s overview 16 4.2 The analysis of large-scale circulation and case representativeness 16 4.3 Local evolution 20 4.4 Model verification 23 Chapter 5. Mechanisms of cyclogenesis and frontolysis 25 5.1 Barotropic instability 25 5.2 Cyclogenesis process 27 5.3 Frontolysis process 30 5.4 The role of Taiwan topography 34 Chapter 6. Discussion 37 6.1 The representativeness of Gaemi (2018) 37 6.2 The comparison between Gaemi (2018) and Diana (1984) 39 Chapter7. Conclusions and Future Research Routes 42 7.1 Conclusions 42 7.2 Future work 44 Reference 46 Tables 51 Figures 52 | |
| dc.language.iso | en | |
| dc.subject | 正壓不穩定 | zh_TW |
| dc.subject | 熱帶氣旋生成 | zh_TW |
| dc.subject | 梅雨鋒面 | zh_TW |
| dc.subject | 濾波分析 | zh_TW |
| dc.subject | 位渦 | zh_TW |
| dc.subject | filtering analysis | en |
| dc.subject | tropical cyclone formation | en |
| dc.subject | barotropic instability | en |
| dc.subject | potential vorticity | en |
| dc.subject | Mei-Yu front | en |
| dc.title | 颱風生成與梅雨鋒之交互作用:凱米(2018)個案分析 | zh_TW |
| dc.title | The Interactions between Tropical Cyclone Formations and Mei-Yu Fronts: A Case Study of Typhoon Gaemi (2018) | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游政谷(Hsin-Tsai Liu),李清勝(Chih-Yang Tseng),王重傑 | |
| dc.subject.keyword | 熱帶氣旋生成,梅雨鋒面,濾波分析,位渦,正壓不穩定, | zh_TW |
| dc.subject.keyword | tropical cyclone formation,Mei-Yu front,filtering analysis,potential vorticity,barotropic instability, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202101995 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202114542700.pdf | 16.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
