Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shan-Li Wang)
dc.contributor.authorEmily Karen Kinen
dc.contributor.author金琬芹zh_TW
dc.date.accessioned2022-11-23T09:14:09Z-
dc.date.available2023-08-01
dc.date.available2022-11-23T09:14:09Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-08-03
dc.identifier.citationInstrumentation Center at National Tsing Hua University; Council of agriculture, executive yuan 2018 (Rice production and Harvest area); Council of Agriculture AG. Statistic yearbook 2019. Abe, I., Iwasaki, S., Iwata, Y., Kominami, H., Kera, Y. (1998). Relationship between Production Method and Adsorption Property of Char. Tanso, 1998(185), 277-284. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536-544. Ali, M., Zoltai, S., Radford, F. (1988). A comparison of dry and wet ashing methods for the elemental analysis of peat. Canadian Journal of Soil Science, 68(2), 443-447. Anamosa, P. R., Nkedi-Kizza, P., Blue, W. G., Sartain, J. B. (1990). Water movement through an aggregated, gravelly oxisol from Cameroon. Geoderma, 46(1-3), 263-281. Asada, T., Ishihara, S., Yamane, T., Toba, A., Yamada, A., Oikawa, K. (2002). Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. Journal of Health Science, 48(6), 473-479. Atkinson, C. J., Fitzgerald, J. D., Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337(1), 1-18. Bajracharya, K., Barry, D. (1995). MCMFIT: efficient optimal fitting of a generalized nonlinear advection-dispersion model to experimental data. Computers Geosciences, 21(1), 61-76. Barnett, M., Jardine, P., Brooks, S., Selim, H. (2000). Adsorption and transport of uranium (VI) in subsurface media. Soil Science Society of America Journal, 64(3), 908-917. Barron, V., Herruzo, M., Torrent, J. (1988). Phosphate adsorption by aluminous hematites of different shapes. Soil Science Society of America Journal, 52(3), 647-651. Barrow, N. (1984). Modelling the effects of pH on phosphate sorption by soils. Journal of Soil Science, 35(2), 283-297. Batjes, N. (2011). Global Distribution of Soil Phosphorus Retention Potential. No. 2011/06. ISRIC-World Soil Information. Beaton, J., Peterson, H., Bauer, N. (1960). Some aspects of phosphate adsorption by charcoal. Soil Science Society of America Journal, 24(5), 340-346. Bekiaris, G., Peltre, C., Barsberg, S. T., Bruun, S., Sørensen, K. M., Engelsen, S. B., Magid, J., Hansen, M., Jensen, L. S. (2020). Three different Fourier‐transform mid‐infrared sampling techniques to characterize bio‐organic samples (0047-2425), Vol. 49, No. 5, pp. 1310-1321. Wiley Online Library Bolan, N., Syers, J., Tillman, R. (1986). Ionic strength effects on surface charge and adsorption of phosphate and sulphate by soils. Journal of Soil Science, 37(3), 379-388. Bolland, M., Gazey, C., Miller, A., Gartner, D., Roche, J.-A. (2004). Subsurface acidity. Bolster, C. H. (2010). Microsoft Excel Spreadsheets for Fitting Sorption Data. Madison, WI: USDA-ARS. Boon, J. J., Pastorova, I., Botto, R., Arisz, P. (1994). Structural studies on cellulose pyrolysis and cellulose chars by PYMS, PYGCMS, FTIR, NMR and by wet chemical techniques. Biomass and Bioenergy, 7(1-6), 25-32. Borggaard, O., Raben-Lange, B., Gimsing, A., Strobel, B. (2005). Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma, 127(3-4), 270-279. Bouchard, D. C., Wood, A. L., Campbell, M. L., Nkedi-Kizza, P., Rao, P. S. C. (1988). Sorption nonequilibrium during solute transport. Journal of Contaminant Hydrology, 2(3), 209-223. Brusseau, M. L., Larsen, T., Christensen, T. (1991). Rate‐limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials. Water Resources Research, 27(6), 1137-1145. Cassman, K. G., Peng, S., Dobermann, A. (1997). Nutritional physiology of the rice plants and productivity decline of irrigated rice systems in the tropics. Soil Science and Plant Nutrition, 43(sup1), 1101-1106. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. (2008). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), 629-634. Chang, Y.-T., Hsi, H.-C., Hseu, Z.-Y., Jheng, S.-L. (2013). Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. Journal of Environmental Science and Health, Part A, 48(13), 1748-1756. Chen, B., Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1), 127-133. Chen, B., Zhou, D., Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science Technology, 42(14), 5137-5143. Chen, Z.-S., Hseu, Z.-Y., Tsai, C.-C. (2015). The Soils of Taiwan. Dordrecht: Springer Netherlands. Chen, Z., Chen, B., Zhou, D., Chen, W. (2012). Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environmental Science Technology, 46(22), 12476-12483. Cheng, C.-H., Lehmann, J., Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72(6), 1598-1610. Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D. (2008). Stability of black carbon in soils across a climatic gradient. Journal of Geophysical Research: Biogeosciences, 113(G2). Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., Clay, S. A., Julson, J. L. (2014). Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures. CLEAN–Soil, Air, Water, 42(5), 626-634. Chiou, C. T., Kile, D. E. (1998). Deviations from Sorption Linearity on Soils of Polar and Nonpolar Organic Compounds at Low Relative Concentrations. Environmental Science Technology, 32(3), 338-343. Chun, Y., Sheng, G., Chiou, C. T., Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science Technology, 38(17), 4649-4655. Cicerone, R., Delwiche, C., Tyler, S., Zimmerman, P. (1992). Methane emissions from California rice paddies with varied treatments. Global Biogeochemical Cycles, 6(3), 233-248. Comegna, V., Coppola, A., Sommella, A. (2001). Effectiveness of equilibrium and physical non-equilibrium approaches for interpreting solute transport through undisturbed soil columns. Journal of Contaminant Hydrology, 50(1), 121-138. Cordell, D., Drangert, J.-O., White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292-305. Cornelissen, G., Gustafsson, Ö., Bucheli, T. D., Jonker, M. T., Koelmans, A. A., van Noort, P. C. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science Technology, 39(18), 6881-6895. Cropping, P. (2005). Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv Agron, 85, 269. Cui, H., Zhou, Y., Gu, Z., Zhu, H., Fu, S., Yao, Q. (2015). The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biology and Biochemistry, 82, 119-126. Danckwerts, P. V. (1953). Continuous flow systems: distribution of residence times. Chemical Engineering Science, 2(1), 1-13. Day, D., Evans, R. J., Lee, J. W., Reicosky, D. (2004). Valuable and stable carbon co-product from fossil fuel exhaust scrubbing. Prepr Pap Am Chem Soc Div Fuel Chem, 49(1), 352. Ding, W., Dong, X., Ime, I. M., Gao, B., Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68-74. Doğan, M., Alkan, M. (2003). Removal of methyl violet from aqueous solution by perlite. Journal of Colloid and Interface Science, 267(1), 32-41. Enders, A., Lehmann, J. (2012). Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Communications in Soil Science and Plant Analysis, 43(7), 1042-1052. Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., Senior, E. (2012). Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311-2364. Essington, M. E. (2015). Soil and Water Chemistry: An Integrative Approach (2nd Edition). New York: CRC press. Fan, Z., Casey, F. X., Hakk, H., Larsen, G. L., Khan, E. (2011). Sorption, fate, and mobility of sulfonamides in soils. Water, Air, Soil Pollution, 218(1), 49-61. Fetter, C. W., Boving, T. B., Kreamer, D. K. (1999). Contaminant Hydrogeology (Vol. 406). Upper Saddle River, NJ: Prentice hall. Fidel, R. B., Laird, D. A., Thompson, M. L., Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167, 367-373. Figueredo, N. A. d., Costa, L. M. d., Melo, L. C. A., Siebeneichlerd, E. A., Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica, 48(3), 3-403. Fink, J. R., Inda, A. V., Tiecher, T., Barrón, V. (2016). Iron oxides and organic matter on soil phosphorus availability. Ciencia e Agrotecnologia, 40(4), 369-379. Fraser, T., Lynch, D. H., Entz, M. H., Dunfield, K. E. (2015). Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma, 257, 115-122. Freundlich, H. (1926). Colloid and capillary chemistry. Methuen and Co. Ltd., London. Gérard, F. (2016). Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma, 262, 213-226. Gamage, D. V., Mapa, R., Dharmakeerthi, R., Biswas, A. (2016). Effect of rice-husk biochar on selected soil properties in tropical Alfisols. Soil Research, 54(3), 302-310. Gao, Y., Guo, X., Liu, Y., Fang, Z., Zhang, M., Zhang, R., You, L., Li, T., Liu, R. H. (2018). A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose nanocrystals. Scientific Reports, 8(1), 1-8. Gaskin, J. W., Steiner, C., Harris, K., Das, K., Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061-2069. Gee, G. W., Or, D. (2002). 2.4 Particle‐size analysis. In J. H. Dane C. G. Topp (Eds.), Methods of soil analysis: Part 4 physical methods (pp. 255-293). https://doi.org/10.2136/sssabookser5.4 Goode, D. J., Konikow, L. F. (1989). Modification of a method-of-characteristics solute-transport model to incorporate decay and equilibrium-controlled sorption or ion exchange (No. 89-4030). Department of the Interior, US Geological Survey. Gulicovski, J. J., Čerović, L. S., Milonjić, S. K. (2008). Point of zero charge and isoelectric point of alumina. Materials and manufacturing processes, 23(6), 615-619. Guppy, C. N., Menzies, N., Moody, P. W., Blamey, F. (2005). Competitive sorption reactions between phosphorus and organic matter in soil: a review. Soil Research, 43(2), 189-202. Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, 135(1-3), 264-273. Hashimoto, I., Deshpande, K., Thomas, H. C. (1964). Peclet numbers and retardation factors for ion exchange columns. Industrial Engineering Chemistry Fundamentals, 3(3), 213-218. Hedley, M., Stewart, J., Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970-976. Hillel, D. (2012). Applications of soil physics. London, UK: Elsevier. Ho, Y., Porter, J., McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141(1), 1-33. Hoffman, D., Rolston, D. (1980). Transport of organic phosphate in soil as affected by soil type. Soil Science Society of America Journal, 44(1), 46-52. Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223-228. Jang, J., Lee, D. S. (2019). Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies. Journal of Hazardous Materials, 375, 9-18. Jenkins, B., Bakker, R., Williams, R., Goronea, M., Carlson, W., Duffy, J., Baxter, L., Tiangco, V. (1997). Combustion of Leached Rice Straw in Wheelbrator-Shasta Boiler No. 1 at Temperatures above 9000C. Paper No. 97S-032, Western States Section. Paper presented at the The Combustion Institute, 1997 Spring Meeting, Sandia National Laboratories, Livermore, California. Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental Science Technology, 44(16), 6189-6195. Keech, O., Carcaillet, C., Nilsson, M.-C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant and Soil, 272(1-2), 291-300. Keeney, D. R., Nelson, D. W. (1983). Nitrogen—inorganic forms. In A. L. Page (Ed.), Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (9.2.2, 2nd Edition). (pp. 643-698.). https://doi.org/10.2134/agronmonogr9.2.2ed Knicker, H. (2007). How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85(1), 91-118. Koch, S., Flühler, H. (1993). Solute transport in aggregated porous media: Comparing model independent and dependent parameter estimation. Water, Air, and Soil Pollution, 68(1-2), 275-289. Kolahchi, Z., Jalali, M. (2013). Phosphorus movement and retention by two calcareous soils. Soil and Sediment Contamination: An International Journal, 22(1), 21-38. Kreft, A., Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, 33(11), 1471-1480. Laine, J., Simoni, S., Calles, R. (1991). Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln. Chemical Engineering Communications, 99(1), 15-23. Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442. Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids.1. Journal of the American Chemical Society, 39(9), 1848-1906. Lapidus, L., Amundson, N. R. (1952). Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns. The Journal of Physical Chemistry, 56(8), 984-988. Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., Jung, J., Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresource technology, 148, 196-201. Lehmann, J. (2007). Bio‐energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387. Lehmann, J., Joseph, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. London, UK: Routledge. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. Liang, C., Gascó, G., Fu, S., Méndez, A., Paz-Ferreiro, J. (2016). Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil and Tillage Research, 164, 3-10. Liao, R., Hu, J., Li, Y., Li, S. (2020). Phosphorus transport in riverbed sediments and related adsorption and desorption characteristics in the Beiyun River, China. Environmental Pollution, 266, 115153. Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., Paz-Ferreiro, J. (2015). Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging. Water, Air, Soil Pollution, 226(5), 1-11. Ma, J., Ma, Y., Wei, R., Chen, Y., Weng, L., Ouyang, X., Li, Y. (2021). Phosphorus transport in different soil types and the contribution of control factors to phosphorus retardation. Chemosphere, 276, 130012. Ma’ruf, A., Pramudono, B., Aryanti, N. (2017). Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. In AIP Conference Proceedings, Vol. 1823, No. 1, p.020013. Marsh, H., Rodríguez-Reinoso, F. (2006). Chapter 4 - Characterization of Activated Carbon. In H. Marsh F. Rodríguez-Reinoso (Eds.), Activated Carbon (pp. 143-242). Oxford: Elsevier Science Ltd. Masulili, A., Utomo, W. H., Syechfani, M. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1), 39. McCarthy, J. F., Ilavsky, J., Jastrow, J. D., Mayer, L. M., Perfect, E., Zhuang, J. (2008). Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72(19), 4725-4744. McGrath, T. E., Chan, W. G., Hajaligol, M. R. (2003). Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 66(1-2), 51-70. McKay, G., Poots, V. J. (1980). Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent. Journal of Chemical Technology and Biotechnology, 30(1), 279-292. Mehra, O., Jackson, M. (2013). Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and clay minerals, 317-327. Mengel, K., Kirkby, E. A., Kosegarten, H., Appel, T. (2001). Phosphorus. In K. Mengel, E. A. Kirkby, H. Kosegarten, T. Appel (Eds.), Principles of Plant Nutrition (pp. 453-479). Dordrecht: Springer Netherlands. Miura, Y., Kanno, T. (1997). Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Science and Plant Nutrition, 43(4), 849-854. Murphy, J., Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. Naeem, M. A., Khalid, M., Arshad, M., Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51(1). Nair, P., Logan, T., Sharpley, A., Sommers, L., Tabatabai, M., Yuan, T. (1984). Interlaboratory Comparison of a Standardized Phosphorus Adsorption Procedure. Journal of Enviromental Quality, 13, 591-595. Ngatia, L. W., Hsieh, Y. P., Nemours, D., Fu, R., Taylor, R. W. (2017). Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption. Chemosphere, 180, 201-211. Nguyen, T. H., Cho, H.-H., Poster, D. L., Ball, W. P. (2007). Evidence for a Pore-Filling Mechanism in the Adsorption of Aromatic Hydrocarbons to a Natural Wood Char. Environmental Science Technology, 41(4), 1212-1217. Ni, H., Han, Y., Cao, J., Chen, L.-W. A., Tian, J., Wang, X., Chow, J. C., Watson, J. G., Wang, Q., Wang, P. (2015). Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmospheric Environment, 123, 399-406. Nielsen, D. R., Biggar, J. W. (1961). Miscible displacement in soils: I. Experimental information. Soil Science Society of America Journal, 25(1), 1-5. Nkedi‐Kizza, P., Biggar, J., Selim, H., Van Genuchten, M. T., Wierenga, P., Davidson, J., Nielsen, D. (1984). On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol. Water Resources Research, 20(8), 1123-1130. Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., Niandou, M. A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2), 105-112. Painter, S., Cvetkovic, V., Pickett, D., Turner, D. R. (2002). Significance of Kinetics for Sorption on Inorganic Colloids:  Modeling and Experiment Interpretation Issues. Environmental Science Technology, 36(24), 5369-5375. Pang, L., Close, M. E. (1999). Non-equilibrium transport of Cd in alluvial gravels. Journal of Contaminant Hydrology, 36(1), 185-206. Pardo, M., Guadalix, M. E., Garcia-Gonzalez, M. (1992). Effect of pH and background electrolyte on P sorption by variable charge soils. Geoderma, 54(1-4), 275-284. Pignatello, J. J., Kwon, S., Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental Science Technology, 40(24), 7757-7763. Prakongkep, N., Gilkes, R. J., Wiriyakitnateekul, W., Duangchan, A., Darunsontaya, T. (2013). The effects of pyrolysis conditions on the chemical and physical properties of rice husk biochar. International Journal of Material Science, 3(3), 97-103. Pratiwi, E. P. A., Shinogi, Y. (2016). Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy and Water Environment, 14(4), 521-532. Qayyum, M. F., Ashraf, I., Abid, M., Steffens, D. (2015). Effect of biochar, lime, and compost application on phosphorus adsorption in a Ferralsol. Journal of Plant Nutrition and Soil Science, 178(4), 576-581. Qin, Q., Chen, X., Zhuang, J. (2017). The surface-pore integrated effect of soil organic matter on retention and transport of pharmaceuticals and personal care products in soils. Science of The Total Environment, 599, 42-49. Qiu, Y., Zheng, Z., Zhou, Z., Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 100(21), 5348-5351. Rao, C. R., Rao, C. R., Statistiker, M., Rao, C. R., Rao, C. R. (1973). Linear Statistical Inference and its Applications (Vol. 2). New York: Wiley. Rao, D. N., Mikkelsen, D. (1976). Effect of Rice Straw Incorporation on Rice Plant Growth and Nutrition 1. Agronomy Journal, 68(5), 752-756. Reed, B. E., Matsumoto, M. R. (1993). Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Separation Science and Technology, 28(13-14), 2179-2195. Reichenauer, T. G., Panamulla, S., Subasinghe, S., Wimmer, B. (2009). Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka. Environmental Geochemistry and Health, 31(5), 573-579. Rondon, M., Ramirez, J., Lehmann, J. (2005). Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. Paper presented at the Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, Vol. 208, pp. 21-24. Ruban, V., López-Sánchez, J., Pardo, P., Rauret, G., Muntau, H., Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1(1), 51-56. Rutherford, D. W., Wershaw, R. L., Rostad, C. E., Kelly, C. N. (2012). Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass and Bioenergy, 46, 693-701. Schimmelpfennig, S., Glaser, B. (2012). One step forward toward characterization: some important material properties to distinguish biochars. Journal of Environmental Quality, 41(4), 1001-1013. Schwartz, R., McInnes, K., Juo, A., Wilding, L., Reddell, D. (1999). Boundary effects on solute transport in finite soil columns. Water Resources Research, 35(3), 671-681. Schwertmann, U. (1964). Differenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat‐Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105(3), 194-202. Schwertmann, U., Kodama, H., Fischer, W. (1986). Mutual interactions between organics and iron oxides. Interactions of soil minerals with natural organics and microbes, 17, 223-250. Selim, H. M., Gaston, L. A. (2017). Transport of Cadmium and Phosphate in Soils: Miscible Displacement Experiments and Nonlinear Modeling. Soil Science, 182(7). Seo, Y., Lee, J. (2005). Characterizing preferential flow of nitrate and phosphate in soil using time domain reflectometry. Soil Science, 170(1), 47-54. Shaheen, S., Tsadilas, C. (2013). Phosphorus sorption and availability to canola grown in an alfisol amended with various soil amendments. Communications in Soil Science and Plant Analysis, 44(1-4), 89-103. Shaheen, S. M., Tsadilas, C. D., Eskridge, K. M. (2009). Effect of common ions on phosphorus sorption and lability in Greek Alfisols with different pH. Soil Science, 174(1), 21-26. Shaheen, S. M., Tsadilas, C. D., Eskridge, K. M. (2009). Effect Of Common Ions On Phosphorus Sorption And Lability In Greek Alfisols With Different pH. Soil Science, 174(1). Shaheen, S. M., Tsadilas, C. D., Stamatiadis, S. (2007). Inorganic phosphorus forms in some entisols and aridisols of Egypt. Geoderma, 142(1-2), 217-225. Shan, Y., Johnson-Beebout, S., Buresh, R. (2008). Crop residue management for lowland rice-based cropping systems in Asia. Advances in Agronomy, 98, 117-199. Sharpley, A. (2000). Phosphorus availability. In Handbook of Soil Science (pp. D18-D37). Boca Raton, FL: CRC Press. Shepherd, J. G., Joseph, S., Sohi, S. P., Heal, K. V. (2017). Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties. Chemosphere, 179, 57-74. Shinogi, Y., Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90(3), 241-247. Šimůnek, J., van Genuchten, M. T., Šejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7(2), 587-600. Sinaj, S., Bürkert, A., El-Hajj, G., Bationo, A., Traore, H., Frossard, E. (2001). Effects of fertility management strategies on phosphorus bioavailability in four West African soils. Plant and Soil, 233(1), 71-83. Singh, C., Tiwari, S., Gupta, V. K., Singh, J. S. (2018). The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena, 171, 485-493. Singh, R., Babu, J. N., Kumar, R., Srivastava, P., Singh, P., Raghubanshi, A. S. (2015). Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecological Engineering, 77, 324-347. Smil, V. (2000). Phosphorus in the environment: natural flows and human interferences. Annual Review of Energy and the Environment, 25(1), 53-88. Soinne, H., Hovi, J., Tammeorg, P., Turtola, E. (2014). Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 219-220, 162-167. Sombroek, W., Ruivo, M. D. L., Fearnside, P. M., Glaser, B., Lehmann, J. (2003). Amazonian dark earths as carbon stores and sinks. In Amazonian dark earths (pp. 125-139). Dordrect: Springer Netherlands. Sparks, D. L. (2003). Environmental Soil Chemistry. San Diego, Ca: Elsevier. Sposito, G. (1989). Soil Chemistry. New York, NY: Oxford Academic Press. Steen, I. (1998). Phosphorus availability in the 21st century: management of a non-renewable resource. Phosphorus Potassium, 217, 25-31. Sun, Z., Shangguan, Y., Wei, Y., Su, B., Zhou, C., Hou, H. (2018). A study on antimony migration in soils using an artificial neural network model and a convection-dispersion diffusion model. Ecological Modelling, 389, 1-10. Tan, W.-f., Li, Y., Guo, F., Wang, Y.-c., Ding, L., Mumford, K., Lv, J.-w., Deng, Q.-w., Fang, Q., Zhang, X.-w. (2020). Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. Journal of Environmental Radioactivity, 217, 106202. Tomczyk, A., Sokołowska, Z., Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. Toride, N., Leij, F., Van Genuchten, M. T. (1995). The CXTFIT code for estimating transport parameters from laboratory or filed tracer experiments (Vol. 2). Riverside, CA:US Salinity Laboratory. Treybal, R. E. (1980). Mass-Transfer Operations (3rd Edition). New York, NY: McGraw-Hill. Tsadilas, C., Samaras, V., Dimoyiannis, D. (1996). Phosphate sorption by red Mediterranean soils from Greece. Communications in Soil Science and Plant Analysis, 27(9-10), 2279-2293. Uchimiya, M., Wartelle, L. H., Lima, I. M., Klasson, K. T. (2010). Sorption of Deisopropylatrazine on Broiler Litter Biochars. Journal of Agricultural and Food Chemistry, 58(23), 12350-12356. Van Der Gon, H. D., Neue, H. (1995). Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9(1), 11-22. van der Zee, S., Leus, F., Louer, M. (1989). Application of linear and non-linear P-sorption models for describing phosphate transport. NJAS Wageningen Journal of Life Sciences, 37(4), 387-390. Van Genuchten, M. T., Parker, J. (1984). Boundary conditions for displacement experiments through short laboratory soil columns. Soil Science Society of America Journal, 48(4), 703-708. Van Genuchten, M. T., Wagenet, R. (1989). Two‐site/two‐region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Science Society of America Journal, 53(5), 1303-1310. Van Genuchten, M. T., Wierenga, P. (1976). Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal, 40(4), 473-480. Von Uexküll, H., Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171(1), 1-15. Von Wandruszka, R. (2006). Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical Transactions, 7(1), 1-8. Walkley, A., Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. Wang, T., Camps-Arbestain, M., Hedley, M., Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357(1), 173-187. Wassmann, R., Tölg, M., Papen, H., Rennenberg, H., Seiler, W., Cheng, D., Wang, M. (1996). Spatial and seasonal distribution of organic amendments affecting methane emission from Chinese rice fields. Biology and Fertility of Soils, 22(3), 191-195. Xing, B., Pignatello, J. J. (1997). Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environmental Science Technology, 31(3), 792-799. Xing, B., Pignatello, J. J. (2005). SORPTION | Organic Chemicals. In D. Hillel (Ed.), Encyclopedia of Soils in the Environment (pp. 53………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79858-
dc.description.abstract近年由農業廢棄物所製造的生物炭被施佈於土壤作為土壤改良劑,但其對於不同質地的土壤的養分移動的機制及效益卻尚未被充分了解。由於文獻中生物炭對於土壤中磷(P)的吸附和遷移能力的作用呈現出正反的結果,因此本研究之目的為探討生物炭對於酸性土壤中磷的滯留和移動的影響。生物炭是由稻殼分別在350 和 600 °C 且限制氧氣條件下加熱處理2 小時獲得的,並指定為 BC350 和 BC600。將以上兩種生物炭以 5% 的施用率添加到兩種質地不同的酸性土壤中, Tn(砂壤土)和 Pc(粘土)土壤,構成六個實驗組,Tn (對照組)、Tn+5%BC350 (Tn350)、Tn+5%BC600 (Tn600)、Pc (對照組)、Pc+5%BC350 (Pc350) 和 Pc+5%BC600 (Pc600) ,分別進行了批次吸附與管柱淋洗實驗。吸附參數是通過將吸附數據擬合到 Langmuir 和 Freundlich等溫吸附曲線所獲得的;而滯留及傳輸相關參數則是使用 CXTFIT-Studio of Analytical MODels (STANMOD)從管柱淋洗實驗數據中所獲得的。使用吸附實驗推導出的滯留係數作為預測 P-breakthrough curve (BTC) 的模型參數會高估滯留程度,而低估添加生物炭的土壤中 P 的遷移性。管柱實驗可觀察到,在黏質土壤中的磷阻滯性強,而在砂質土壤中磷阻滯較弱。使用two-site非平衡模型可以充分地描述 P 貫穿曲線的不對稱和延遲,而結果顯示,除了 Tn600 外,將生物炭施用於 Tn 和 Pc 土壤中磷的滯保性和吸附能力皆總體下降。這些發現可以讓我們更深入了解 P 是如何保留在土壤中的,以及生物炭的適當管理以保護水質免受 P 汙染和最有效地增加土壤肥力。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:14:09Z (GMT). No. of bitstreams: 1
U0001-0308202100045200.pdf: 3392402 bytes, checksum: 3b4c4a80e34ff51cfce6a7c605ede964 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 (APPROVAL PAGE) I 誌謝 (ACKNOWLEDGEMENTS) II 摘要 III ABSTRACT IV TABLE OF CONTENTS VI LIST OF FIGURES X LIST OF TABLES XII CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 4 2.1 PHOSPHORUS 4 2.1.1 Importance of phosphorus 4 2.1.2 Use of rice biowaste as alternate source of phosphorous 11 2.2 CHARACTERISTICS OF BIOCHAR 12 2.2.1 Rice husk biochar 13 2.2.2 Effects of pyrolysis temperature on biochar 15 2.2.3 Phosphorous adsorption to biochar 21 2.2.4 Interactive effects of biochar on P in soils 23 2.3 STUDY OF ADSORPTION ISOTHERM 27 2.4 STUDY OF BREAKTHROUGH MODELING 27 CHAPTER 3. MATERIAL AND METHODS 30 3.1 MATERIAL PREPARATION 30 3.1.1 Soil collection: 30 3.1.2 Biochar preparation 30 3.2 PROPERTY ANALYSIS OF SOIL AND BIOCHAR 31 3.2.1 Soil and biochar pseudo-total analysis 31 3.2.2 Analysis of soil property 33 3.2.2.1 Soil organic matter 36 3.2.2.2 Soil CEC and exchangeable K, Ca, and Mg 37 3.2.3 Analysis of biochar property 38 3.2.3.1 Zeta potential of biochar 40 3.2.3.2 FTIR analysis of biochar 40 3.2.4 Soil and biochar particle density 41 3.2.5 Soil and biochar mass water content 42 3.3 EXPERIMENTAL DESIGN 42 3.3.1 Batch experiments 42 3.3.2 Leaching Column Experimental Design 47 3.3.2.1 Leaching Column Porosity 50 3.3.2.2 Chemical analysis 50 3.4 TRANSPORT MODEL 51 3.4.1 Breakthrough modeling 53 3.4.2 Initial and flux boundary conditions 55 3.4.3 Estimation of transport and sorption parameters 56 3.4.4 STANMODE-CXTFIT 57 3.5 EVALUATION OF MODEL PERFORMANCE 60 CHAPTER 4. RESULTS AND DISCUSSION 61 4.1 SOIL PROPERTIES 61 4.2 BIOCHAR PROPERTIES 65 4.2.1 Elemental compositions 65 4.2.2 Surface charge properties of BC350 and BC600 70 4.2.3 Characterization of biochar by FTIR 72 4.3 BATCH EXPERIMENTS 75 4.4 LEACHING COLUMN EXPERIMENTS 81 4.4.1 CHEMICAL ANALYSIS ON LEACHING SAMPLES 91 CHAPTER 5. CONCLUSIONS 98 REFERENCES 100 "
dc.language.isoen
dc.subject磷移動zh_TW
dc.subject磷吸附zh_TW
dc.subject生物炭zh_TW
dc.subject酸性土壤zh_TW
dc.subjectCXTFIT 模型zh_TW
dc.subject貫穿曲線zh_TW
dc.subjectbreakthrough curveen
dc.subjectphosphorus mobilityen
dc.subjectphosphorus sorptionen
dc.subjectbiocharen
dc.subjectCXTFITen
dc.subjectacidic soilen
dc.title在酸性土壤中添加稻殼生物炭對於磷吸附與移動之影響zh_TW
dc.titleThe Effects of Rice Husk-Derived Biochar on Phosphorus Sorption and Mobility in Acidic Soilsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源(Hsin-Tsai Liu),許正一(Chih-Yang Tseng),鄒裕民,簡士濠
dc.subject.keywordCXTFIT 模型,貫穿曲線,酸性土壤,生物炭,磷吸附,磷移動,zh_TW
dc.subject.keywordCXTFIT,breakthrough curve,acidic soil,biochar,phosphorus sorption,phosphorus mobility,en
dc.relation.page121
dc.identifier.doi10.6342/NTU202102020
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2023-08-01-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-0308202100045200.pdf3.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved