請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Bing-Huang Jiang | en |
| dc.contributor.author | 江炳煌 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:13:35Z | - |
| dc.date.available | 2021-08-11 | |
| dc.date.available | 2022-11-23T09:13:35Z | - |
| dc.date.copyright | 2021-08-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-06 | |
| dc.identifier.citation | 1. Park, M.-H.; Kim, J.-Y.; Han, T.-H.; Kim, T.-S.; Kim, H.; Lee, T.-W., Flexible lamination encapsulation. Advanced Materials 2015, 27 (29), 4308-4314. 2. Huang, T.; Jiang, W.; Duan, L., Recent progress in solution processable tadf materials for organic light-emitting diodes. Journal of Materials Chemistry C 2018, 6 (21), 5577-5596. 3. Wen, Z.; Yeh, M.-H.; Guo, H.; Wang, J.; Zi, Y.; Xu, W.; Deng, J.; Zhu, L.; Wang, X.; Hu, C.; Zhu, L.; Sun, X.; Wang, Z. L., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances 2016, 2 (10), e1600097. 4. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z.; Park, S., Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Advanced Materials 2019, 31 (48), 1904765. 5. Chow, P. C. Y.; Someya, T., Organic photodetectors for next-generation wearable electronics. Advanced Materials 2020, 32 (15), 1902045. 6. Li, Y.; Xu, G.; Cui, C.; Li, Y., Flexible and semitransparent organic solar cells. Advanced Energy Materials 2018, 8 (7), 1701791. 7. Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S., Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications 2012, 3 (1), 770. 8. Fukuda, K.; Takeda, Y.; Mizukami, M.; Kumaki, D.; Tokito, S., Fully solution-processed flexible organic thin film transistor arrays with high mobility and exceptional uniformity. Scientific Reports 2014, 4 (1), 3947. 9. Kurpiers, J.; Ferron, T.; Roland, S.; Jakoby, M.; Thiede, T.; Jaiser, F.; Albrecht, S.; Janietz, S.; Collins, B. A.; Howard, I. A.; Neher, D., Probing the pathways of free charge generation in organic bulk heterojunction solar cells. Nature Communications 2018, 9 (1), 2038. 10. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of conjugated polymers for organic solar cell applications. Chemical Reviews 2009, 109 (11), 5868-5923. 11. Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X., Inverted organic photovoltaic cells. Chemical Society Reviews 2016, 45 (10), 2937-2975. 12. Yip, H.-L.; Jen, A. K. Y., Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environmental Science 2012, 5 (3), 5994-6011. 13. Yin, Z.; Wei, J.; Zheng, Q., Interfacial materials for organic solar cells: Recent advances and perspectives. Advanced Science 2016, 3 (8), 1500362. 14. Wang, Y.; Zhan, X., Layer-by-layer processed organic solar cells. Advanced Energy Materials 2016, 6 (17), 1600414. 15. Wang, Z.; Zhu, L.; Shuai, Z.; Wei, Z., A–π–d–π–a electron-donating small molecules for solution-processed organic solar cells: A review. Macromolecular Rapid Communications 2017, 38 (22), 1700470. 16. Xu, X.; Zhang, G.; Li, Y.; Peng, Q., The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells. Chinese Chemical Letters 2019, 30 (4), 809-825. 17. Fu, H.; Wang, Z.; Sun, Y., Polymer donors for high-performance non-fullerene organic solar cells. Angewandte Chemie International Edition 2019, 58 (14), 4442-4453. 18. Ganesamoorthy, R.; Sathiyan, G.; Sakthivel, P., Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Solar Energy Materials and Solar Cells 2017, 161, 102-148. 19. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X., Non-fullerene acceptors for organic solar cells. Nature Reviews Materials 2018, 3 (3), 18003. 20. Cheng, P.; Li, G.; Zhan, X.; Yang, Y., Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics 2018, 12 (3), 131-142. 21. Zhou, N.; Facchetti, A., Naphthalenediimide (ndi) polymers for all-polymer photovoltaics. Materials Today 2018, 21 (4), 377-390. 22. Gueymard, C. A.; Myers, D.; Emery, K., Proposed reference irradiance spectra for solar energy systems testing. Solar Energy 2002, 73 (6), 443-467. 23. Xu, T.; Yu, L., How to design low bandgap polymers for highly efficient organic solar cells. Materials Today 2014, 17 (1), 11-15. 24. Bao, X.; Zhang, Y.; Wang, J.; Zhu, D.; Yang, C.; Li, Y.; Yang, C.; Xu, J.; Yang, R., High extinction coefficient thieno[3,4-b]thiophene-based copolymer for efficient fullerene-free solar cells with large current density. Chemistry of Materials 2017, 29 (16), 6766-6771. 25. Zhang, Y.; Sajjad, M. T.; Blaszczyk, O.; Parnell, A. J.; Ruseckas, A.; Serrano, L. A.; Cooke, G.; Samuel, I. D. W., Large crystalline domains and an enhanced exciton diffusion length enable efficient organic solar cells. Chemistry of Materials 2019, 31 (17), 6548-6557. 26. Kekuda, D.; Huang, J.-H.; Ho, K.-C.; Chu, C.-W., Modulation of donor−acceptor interface through thermal treatment for efficient bilayer organic solar cells. The Journal of Physical Chemistry C 2010, 114 (6), 2764-2768. 27. Nakano, K.; Tajima, K., Organic planar heterojunctions: From models for interfaces in bulk heterojunctions to high-performance solar cells. Advanced Materials 2017, 29 (25), 1603269. 28. Coropceanu, V.; Chen, X.-K.; Wang, T.; Zheng, Z.; Brédas, J.-L., Charge-transfer electronic states in organic solar cells. Nature Reviews Materials 2019, 4 (11), 689-707. 29. Xu, B.; Hou, J., Solution-processable conjugated polymers as anode interfacial layer materials for organic solar cells. Advanced Energy Materials 2018, 8 (20), 1800022. 30. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Advanced Materials 2006, 18 (6), 789-794. 31. Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J., From fullerene–polymer to all-polymer solar cells: The importance of molecular packing, orientation, and morphology control. Accounts of Chemical Research 2016, 49 (11), 2424-2434. 32. Jiang, B.-H.; Peng, Y.-J.; Chen, C.-P., Simple structured polyetheramines, jeffamines, as efficient cathode interfacial layers for organic photovoltaics providing power conversion efficiencies up to 9.1%. Journal of Materials Chemistry A 2017, 5 (21), 10424-10429. 33. Jao, M.-H.; Liao, H.-C.; Su, W.-F., Achieving a high fill factor for organic solar cells. Journal of Materials Chemistry A 2016, 4 (16), 5784-5801. 34. Li, Y., Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research 2012, 45 (5), 723-733. 35. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:Fullerene solar cells. Nature Materials 2006, 5 (3), 197-203. 36. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688. 37. Moon, J. S.; Lee, J. K.; Cho, S.; Byun, J.; Heeger, A. J., “Columnlike” structure of the cross-sectional morphology of bulk heterojunction materials. Nano Letters 2009, 9 (1), 230-234. 38. Chen, Y.-C.; Yu, C.-Y.; Fan, Y.-L.; Hung, L.-I.; Chen, C.-P.; Ting, C., Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chemical Communications 2010, 46 (35), 6503-6505. 39. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials 2010, 22 (20), E135-E138. 40. Wan, Q.; Guo, X.; Wang, Z.; Li, W.; Guo, B.; Ma, W.; Zhang, M.; Li, Y., 10.8% efficiency polymer solar cells based on ptb7-th and pc71bm via binary solvent additives treatment. Advanced Functional Materials 2016, 26 (36), 6635-6640. 41. Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications 2014, 5 (1), 5293. 42. Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X., An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials 2015, 27 (7), 1170-1174. 43. Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J., Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Advanced Materials 2016, 28 (23), 4734-4739. 44. Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C.-Z.; Russell, T. P.; Chen, H., An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Advanced Materials 2018, 30 (6), 1705208. 45. Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J., Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials 2016, 28 (42), 9423-9429. 46. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J., Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society 2017, 139 (21), 7148-7151. 47. Zhang, S.; Qin, Y.; Zhu, J.; Hou, J., Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Advanced Materials 2018, 30 (20), 1800868. 48. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3 (4), 1140-1151. 49. Zhu, L.; Zhang, M.; Zhou, G.; Hao, T.; Xu, J.; Wang, J.; Qiu, C.; Prine, N.; Ali, J.; Feng, W.; Gu, X.; Ma, Z.; Tang, Z.; Zhu, H.; Ying, L.; Zhang, Y.; Liu, F., Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties. Advanced Energy Materials 2020, 10 (18), 1904234. 50. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J., Single-junction organic photovoltaic cells with approaching 18% efficiency. Advanced Materials 2020, 32 (19), 1908205. 51. Li, M.-y.; Yin, H.; Sun, G.-Y., Pdi derivatives with functional active position as non-fullerene small molecule acceptors in organic solar cells: From different core linker to various conformation. Applied Materials Today 2020, 21, 100799. 52. Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y., All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Advanced Materials 2017, 29 (47), 1703906. 53. Zhang, Z.-G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y., Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angewandte Chemie International Edition 2017, 56 (43), 13503-13507. 54. Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y., 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718. 55. Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J., Organic tandem solar cells: A review. Energy Environmental Science 2009, 2 (4), 347-363. 56. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y., Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361 (6407), 1094-1098. 57. Naveed, H. B.; Ma, W., Miscibility-driven optimization of nanostructures in ternary organic solar cells using non-fullerene acceptors. Joule 2018, 2 (4), 621-641. 58. Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y., High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Advanced Materials 2018, 30 (8), 1705706. 59. Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D., The role of the third component in ternary organic solar cells. Nature Reviews Materials 2019, 4 (4), 229-242. 60. Bi, P.; Hao, X., Versatile ternary approach for novel organic solar cells: A review. Solar RRL 2019, 3 (1), 1800263. 61. Lin, Y.; Nugraha, M. I.; Firdaus, Y.; Scaccabarozzi, A. D.; Aniés, F.; Emwas, A.-H.; Yengel, E.; Zheng, X.; Liu, J.; Wahyudi, W.; Yarali, E.; Faber, H.; Bakr, O. M.; Tsetseris, L.; Heeney, M.; Anthopoulos, T. D., A simple n-dopant derived from diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Letters 2020, 5 (12), 3663-3671. 62. Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y., A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Advanced Materials n/a (n/a), 2101733. 63. Zhang, S.; Ye, L.; Zhang, H.; Hou, J., Green-solvent-processable organic solar cells. Materials Today 2016, 19 (9), 533-543. 64. Cheng, P.; Zhan, X., Stability of organic solar cells: Challenges and strategies. Chemical Society Reviews 2016, 45 (9), 2544-2582. 65. Brus, V. V.; Lee, J.; Luginbuhl, B. R.; Ko, S.-J.; Bazan, G. C.; Nguyen, T.-Q., Solution-processed semitransparent organic photovoltaics: From molecular design to device performance. Advanced Materials 2019, 31 (30), 1900904. 66. Ling, H.; Liu, S.; Zheng, Z.; Yan, F., Organic flexible electronics. Small Methods 2018, 2 (10), 1800070. 67. Wang, Y.; Liu, Y.; Wang, C.; Li, Z.; Sheng, X.; Lee, H. G.; Chang, N.; Yang, H., Storage-less and converter-less photovoltaic energy harvesting with maximum power point tracking for internet of things. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2016, 35 (2), 173-186. 68. Venkateswararao, A.; Ho, J. K. W.; So, S. K.; Liu, S.-W.; Wong, K.-T., Device characteristics and material developments of indoor photovoltaic devices. Materials Science and Engineering: R: Reports 2020, 139, 100517. 69. Ho, J. K. W.; Yin, H.; So, S. K., From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics. Journal of Materials Chemistry A 2020, 8 (4), 1717-1723. 70. Freunek, M.; Freunek, M.; Reindl, L. M., Maximum efficiencies of indoor photovoltaic devices. IEEE Journal of Photovoltaics 2013, 3 (1), 59-64. 71. Raj, A.; Steingart, D., Review—power sources for the internet of things. Journal of The Electrochemical Society 2018, 165 (8), B3130-B3136. 72. Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C. J., Organic photovoltaics for low light applications. Solar Energy Materials and Solar Cells 2011, 95 (12), 3256-3261. 73. Ryu, H. S.; Park, S. Y.; Lee, T. H.; Kim, J. Y.; Woo, H. Y., Recent progress in indoor organic photovoltaics. Nanoscale 2020, 12 (10), 5792-5804. 74. Hou, X.; Wang, Y.; Lee, H. K. H.; Datt, R.; Uslar Miano, N.; Yan, D.; Li, M.; Zhu, F.; Hou, B.; Tsoi, W. C.; Li, Z., Indoor application of emerging photovoltaics—progress, challenges and perspectives. Journal of Materials Chemistry A 2020, 8 (41), 21503-21525. 75. Vincent, P.; Shin, S.-C.; Goo, J. S.; You, Y.-J.; Cho, B.; Lee, S.; Lee, D.-W.; Kwon, S. R.; Chung, K.-B.; Lee, J.-J.; Bae, J.-H.; Shim, J. W.; Kim, H., Indoor-type photovoltaics with organic solar cells through optimal design. Dyes and Pigments 2018, 159, 306-313. 76. Piva, N.; Greco, F.; Garbugli, M.; Iacchetti, A.; Mattoli, V.; Caironi, M., Tattoo-like transferable hole selective electrodes for highly efficient, solution-processed organic indoor photovoltaics. Advanced Electronic Materials 2018, 4 (10), 1700325. 77. Kim, Y. W.; Goo, J. S.; Lee, T. H.; Lee, B. R.; Shin, S.-C.; Kim, H.; Shim, J. W.; Kim, T. G., Tailoring opto-electrical properties of ultra-thin indium tin oxide films via filament doping: Application as a transparent cathode for indoor organic photovoltaics. Journal of Power Sources 2019, 424, 165-175. 78. Lee, H. K. H.; Li, Z.; Durrant, J. R.; Tsoi, W. C., Is organic photovoltaics promising for indoor applications? Applied Physics Letters 2016, 108 (25), 253301. 79. Yin, H.; Ho, J. K. W.; Cheung, S. H.; Yan, R. J.; Chiu, K. L.; Hao, X.; So, S. K., Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%. Journal of Materials Chemistry A 2018, 6 (18), 8579-8585. 80. Park, S. Y.; Li, Y.; Kim, J.; Lee, T. H.; Walker, B.; Woo, H. Y.; Kim, J. Y., Alkoxybenzothiadiazole-based fullerene and nonfullerene polymer solar cells with high shunt resistance for indoor photovoltaic applications. ACS Applied Materials Interfaces 2018, 10 (4), 3885-3894. 81. Lee, H. K. H.; Wu, J.; Barbé, J.; Jain, S. M.; Wood, S.; Speller, E. M.; Li, Z.; Castro, F. A.; Durrant, J. R.; Tsoi, W. C., Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics. Journal of Materials Chemistry A 2018, 6 (14), 5618-5626. 82. Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B., Progress report on phase separation in polymer solutions. Advanced Materials 2019, 31 (26), 1806733. 83. Castelletto, V.; Hamley, I. W., Morphologies of block copolymer melts. Current Opinion in Solid State and Materials Science 2004, 8 (6), 426-438. 84. Ye, L.; Collins, B. A.; Jiao, X.; Zhao, J.; Yan, H.; Ade, H., Miscibility–function relations in organic solar cells: Significance of optimal miscibility in relation to percolation. Advanced Energy Materials 2018, 8 (28), 1703058. 85. McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C., Solvent additives: Key morphology-directing agents for solution-processed organic solar cells. Advanced Materials 2018, 30 (33), 1707114. 86. Li, Y.; Jia, Z.; Zhang, Q.; Wu, Z.; Qin, H.; Yang, J.; Wen, S.; Woo, H. Y.; Ma, W.; Yang, R.; Yuan, J., Toward efficient all-polymer solar cells via halogenation on polymer acceptors. ACS Applied Materials Interfaces 2020, 12 (29), 33028-33038. 87. Liu, T.; Pan, X.; Meng, X.; Liu, Y.; Wei, D.; Ma, W.; Huo, L.; Sun, X.; Lee, T. H.; Huang, M.; Choi, H.; Kim, J. Y.; Choy, W. C. H.; Sun, Y., Alkyl side-chain engineering in wide-bandgap copolymers leading to power conversion efficiencies over 10%. Advanced Materials 2017, 29 (6), 1604251. 88. Vegiraju, S.; Chang, B.-C.; Priyanka, P.; Huang, D.-Y.; Wu, K.-Y.; Li, L.-H.; Chang, W.-C.; Lai, Y.-Y.; Hong, S.-H.; Yu, B.-C.; Wang, C.-L.; Chang, W.-J.; Liu, C.-L.; Chen, M.-C.; Facchetti, A., Intramolecular locked dithioalkylbithiophene-based semiconductors for high-performance organic field-effect transistors. Advanced Materials 2017, 29 (35), 1702414. 89. Park, C.-D.; Fleetham, T. A.; Li, J.; Vogt, B. D., High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing. Organic Electronics 2011, 12 (9), 1465-1470. 90. Chueh, C.-C.; Yao, K.; Yip, H.-L.; Chang, C.-Y.; Xu, Y.-X.; Chen, K.-S.; Li, C.-Z.; Liu, P.; Huang, F.; Chen, Y.; Chen, W.-C.; Jen, A. K. Y., Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy Environmental Science 2013, 6 (11), 3241-3248. 91. Richter, L. J.; DeLongchamp, D. M.; Bokel, F. A.; Engmann, S.; Chou, K. W.; Amassian, A.; Schaible, E.; Hexemer, A., In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Advanced Energy Materials 2015, 5 (3), 1400975. 92. Lai, Y.-Y.; Cheng, Y.-J.; Hsu, C.-S., Applications of functional fullerene materials in polymer solar cells. Energy Environmental Science 2014, 7 (6), 1866-1883. 93. Alam, M. A.; Ray, B.; Khan, M. R.; Dongaonkar, S., The essence and efficiency limits of bulk-heterostructure organic solar cells: A polymer-to-panel perspective. Journal of Materials Research 2013, 28 (4), 541-557. 94. Inaba, S.; Vohra, V., Fabrication processes to generate concentration gradients in polymer solar cell active layers. Materials (Basel) 2017, 10 (5), 518. 95. Zhang, W.; Wu, Y.; Bao, Q.; Gao, F.; Fang, J., Morphological control for highly efficient inverted polymer solar cells via the backbone design of cathode interlayer materials. Advanced Energy Materials 2014, 4 (12), 1400359. 96. Meredig, B.; Salleo, A.; Gee, R., Ordering of poly(3-hexylthiophene) nanocrystallites on the basis of substrate surface energy. ACS Nano 2009, 3 (10), 2881-2886. 97. Meng, B.; Fu, Y.; Xie, Z.; Liu, J.; Wang, L., Phosphonate-functionalized donor polymer as an underlying interlayer to improve active layer morphology in polymer solar cells. Macromolecules 2014, 47 (18), 6246-6251. 98. Manders, J. R.; Tsang, S.-W.; Hartel, M. J.; Lai, T.-H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Advanced Functional Materials 2013, 23 (23), 2993-3001. 99. Li, C.-Y.; Wen, T.-C.; Guo, T.-F., Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells. Journal of Materials Chemistry 2008, 18 (37), 4478-4482. 100. Bulliard, X.; Ihn, S.-G.; Yun, S.; Kim, Y.; Choi, D.; Choi, J.-Y.; Kim, M.; Sim, M.; Park, J.-H.; Choi, W.; Cho, K., Enhanced performance in polymer solar cells by surface energy control. Advanced Functional Materials 2010, 20 (24), 4381-4387. 101. Kim, D. H.; Park, Y. D.; Jang, Y.; Yang, H.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Park, S.; Chang, T.; Chang, C.; Joo, M.; Ryu, C. Y.; Cho, K., Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors. Advanced Functional Materials 2005, 15 (1), 77-82. 102. Cao, B.; He, X.; Fetterly, C. R.; Olsen, B. C.; Luber, E. J.; Buriak, J. M., Role of interfacial layers in organic solar cells: Energy level pinning versus phase segregation. ACS Applied Materials Interfaces 2016, 8 (28), 18238-18248. 103. Gurney, R. S.; Lidzey, D. G.; Wang, T., A review of non-fullerene polymer solar cells: From device physics to morphology control. Reports on Progress in Physics 2019, 82 (3), 036601. 104. Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H. K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H., Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 2019, 3 (12), 3020-3033. 105. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y., Achieving over 16% efficiency for single-junction organic solar cells. Science China Chemistry 2019, 62 (6), 746-752. 106. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications 2019, 10 (1), 2515. 107. Lin, Y.-R.; Liao, Y.-S.; Hsiao, H.-T.; Chen, C.-P., Two-step annealing of niox enhances the niox–perovskite interface for high-performance ambient-stable p–i–n perovskite solar cells. Applied Surface Science 2020, 504, 144478. 108. Park, M.; Lee, S.-H.; Kim, D.; Kang, J.; Lee, J.-Y.; Han, S. M., Fabrication of a combustion-reacted high-performance zno electron transport layer with silver nanowire electrodes for organic solar cells. ACS Applied Materials Interfaces 2018, 10 (8), 7214-7222. 109. White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S., Inverted bulk-heterojunction organic photovoltaic device using a solution-derived zno underlayer. Applied Physics Letters 2006, 89 (14), 143517. 110. Zhai, Z.; Huang, X.; Xu, M.; Yuan, J.; Peng, J.; Ma, W., Greatly reduced processing temperature for a solution-processed niox buffer layer in polymer solar cells. Advanced Energy Materials 2013, 3 (12), 1614-1622. 111. Zhang, X.; Yang, S.; Bi, S.; Kumaresan, A.; Zhou, J.; Seifter, J.; Mi, H.; Xu, Y.; Zhang, Y.; Zhou, H., Improved electron extraction by a zno nanoparticle interlayer for solution-processed polymer solar cells. RSC Advances 2017, 7 (20), 12400-12406. 112. Jiang, B.-H.; Wang, Y.-P.; Liao, C.-Y.; Chang, Y.-M.; Su, Y.-W.; Jeng, R.-J.; Chen, C.-P., Improved blend film morphology and free carrier generation provide a high-performance ternary polymer solar cell. ACS Applied Materials Interfaces 2021, 13 (1), 1076-1085. 113. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140-1151. 114. Zhang, Q.; Chen, Z.; Ma, W.; Xie, Z.; Han, Y., Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. Journal of Materials Chemistry C 2019, 7 (40), 12560-12571. 115. Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; Hou, J., Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy 2019, 4 (9), 768-775. 116. Xiao, B.; Zhang, M.; Yan, J.; Luo, G.; Gao, K.; Liu, J.; You, Q.; Wang, H.-B.; Gao, C.; Zhao, B.; Zhao, X.; Wu, H.; Liu, F., High efficiency organic solar cells based on amorphous electron-donating polymer and modified fullerene acceptor. Nano Energy 2017, 39, 478-488. 117. Jiang, B. H.; Peng, Y.-J.; Huang, Y.-C.; Jeng, R.-J.; Shieh, T.-S.; Huang, C.-I.; Chen, C.-P., Greater miscibility and energy level alignment of conjugated polymers enhance the optoelectronic properties of ternary blend films in organic photovoltaics. Dyes and Pigments 2021, 193, 109543. 118. Elsayed, M. H.; Jiang, B.-H.; Wang, Y.-P.; Chang, P.-Y.; Chiu, Y.-C.; Jeng, R.-J.; Chou, H.-H.; Chen, C.-P., Indacenodithiophene-based n-type conjugated polymers provide highly thermally stable ternary organic photovoltaics displaying a performance of 17.5%. Journal of Materials Chemistry A 2021, 9 (15), 9780-9790. 119. Jiang, B.-H.; Chen, C.-P.; Liang, H.-T.; Jeng, R.-J.; Chien, W.-C.; Yu, Y.-Y., The role of y6 as the third component in fullerene-free ternary organic photovoltaics. Dyes and Pigments 2020, 181, 108613. 120. Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J., A high-efficiency organic solar cell enabled by the strong intramolecular electron push–pull effect of the nonfullerene acceptor. Advanced Materials 2018, 30 (16), 1707170. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79844 | - |
| dc.description.abstract | 本研究旨在探討影響高性能PM6:Y6主動層共混形態之因素,我們總結了主要影響主動層共混形態之因素,並針對尚未被充分研究的部分著手,所以選擇了探討傳輸層表面特性與固體添加劑對於PM6:Y6主動層共混形態之影響。首先,我們選用PEDOT:PSS、氧化鎳(NiOx)、溶膠凝膠法所製備的氧化鋅(ZnO(sol-gel))與奈米顆粒型的氧化鋅(ZnO(NP))來做為PM6:Y6衍生有機太陽能電池的傳輸層。這些傳輸層表面具有不一樣的表面能、表面形態與表面粗糙度,將會影響PM6:Y6主動層的沉積,進而產生不一樣的共混形態。因此我們也近一步藉由原子力顯微鏡與低略角繞射技術來瞭解PM6:Y6共混形態上的變化。並在其中觀察到傳輸層誘導效果會隨主動層溶劑不同而有所差異。接著將不同共混形態的PM6:Y6主動層製備成有機光伏元件,並探討共混形態與元件性能之間的關係。其中PEDOT:PSS上chlorobenzene (CB)所製備的主動層展現出大的相域與高的結晶性,使得對應元件展現11.5 %的PCE。ZnO(sol-gel)上的CB衍生元件則展現截然不同的共混形態,但獲得與PEDOT:PSS衍生元件類似的PCE。導入1-chloronaphthalene (CN)添加劑後,共混形態被近一步的改善,進而使元件PCE超過13 %。同時不封裝的ZnO(sol-gel)衍生元件在環境穩定中展現良好的表現。此外,我們評估了不同共混形態的PM6:Y6主動層在室內光下的元件性質表現,其中在ZnO上chloroform (CF)所製備的元件在室內光伏元件的測試中展現出十足的潛力。最後我們也總結了固體添加劑對於PM6:Y6共混形態與元件性能的影響,並總結出高性能固體添加劑須具備的特性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:13:35Z (GMT). No. of bitstreams: 1 U0001-0408202110124500.pdf: 11233670 bytes, checksum: 9f3563a398f420c632b59081a5152444 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 序言 iii 中文摘要 iv Abstract v 目錄 vii 圖目錄 ix 表目錄 xii 第一章 緒論 1 1-1 前言 1 1-1-1 有機光電材料之特性 4 1-2 有機光伏元件 6 1-2-1 有機光伏元件之工作原理 6 1-2-2 有機光伏元件之元件結構 8 1-2-3 有機光伏元件之主動層材料 11 1-2-4 有機太陽能電池 13 1-2-5 室內光有機太陽能電池 24 1-3 主動層共混形態 30 1-3-1 主動層共混形態的生成 31 1-3-2 控制主動層共混形態的方法 34 1-4 研究動機 41 第二章 PM6/Y6混摻形態對於有機光伏元件性能之影響探討 42 2-1 材料特性 42 2-2 實驗設計 44 2-3 結果與討論 45 2-3-1 傳輸層的表面特性 45 2-3-2 傳輸層對於主動層共混形態之影響 48 2-3-3 不同溶劑或添加劑對於傳輸層誘導主動層形態之影響 54 2-3-4 不同共混形態對於有機太陽能電池性能之影響 62 2-3-5 不同共混形態對於室內光有機太陽能電池性能之影響 69 2-3-6 固體添加劑對於主動層共混形態與元件性能之影響 73 第三章 結論 76 第四章 未來展望 77 第五章 實驗細節 78 4-1 使用藥品與溶劑 78 4-2 使用儀器 79 4-3 元件製程 81 參考文獻 83 作者介紹 95 發表著作 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 能量轉換效率 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 共軛高分子 | zh_TW |
| dc.subject | 非富勒烯 | zh_TW |
| dc.subject | power conversion efficiency | en |
| dc.subject | organic photovoltaic | en |
| dc.subject | conjugated polymer | en |
| dc.subject | non-fullerene | en |
| dc.title | PM6/Y6混摻形態對於有機光伏元件性能之影響探討 | zh_TW |
| dc.title | Investigate the effect of PM6/Y6 blend morphology on the performance of organic photovoltaics | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳志平(Chih-Ping Chen) | |
| dc.contributor.oralexamcommittee | 汪根欉(Hsin-Tsai Liu),闕居振(Chih-Yang Tseng),賴育英 | |
| dc.subject.keyword | 有機太陽能電池,共軛高分子,非富勒烯,能量轉換效率, | zh_TW |
| dc.subject.keyword | organic photovoltaic,conjugated polymer,non-fullerene,power conversion efficiency, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU202102065 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202110124500.pdf | 10.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
