Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79828
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorYu-Xuan Linen
dc.contributor.author林宇宣zh_TW
dc.date.accessioned2022-11-23T09:12:55Z-
dc.date.available2021-08-17
dc.date.available2022-11-23T09:12:55Z-
dc.date.copyright2021-08-17
dc.date.issued2021
dc.date.submitted2021-08-09
dc.identifier.citation1. Ensminger, D. and L.J. Bond, Ultrasonics: fundamentals, technologies, and applications. 2011: CRC press. 2. Wood, R.W. and A.L. Loomis, XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1927. 4(22): p. 417-436. 3. McDannold, N., N. Vykhodtseva, and K. Hynynen, Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound in medicine biology, 2008. 34(6): p. 930-937. 4. Stride, E. and C. Coussios, Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010. 224(2): p. 171-191. 5. Foster, K.R. and M.L. Wiederhold, Auditory responses in cats produced by pulsed ultrasound. The Journal of the Acoustical Society of America, 1978. 63(4): p. 1199-1205. 6. Boland, L.M. and M.M. Drzewiecki, Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell biochemistry and biophysics, 2008. 52(2): p. 59-84. 7. Sachs, F., Stretch-activated ion channels: what are they? Physiology, 2010. 25(1): p. 50-56. 8. Corradi, C. and A. Cozzolino, Effect of ultrasonics on the development of osseous callus in fractures. Archivio di ortopedia, 1953. 66(1): p. 77-98. 9. Hoop, M., et al., Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Scientific reports, 2017. 7(1): p. 1-8. 10. Genchi, G.G., et al., Ultrasound-activated piezoelectric P (VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2018. 14(7): p. 2421-2432. 11. Marino, A., et al., Ultrasound-activated piezoelectric nanoparticles inhibit proliferation of breast cancer cells. Scientific reports, 2018. 8(1): p. 1-13. 12. Damaraju, S.M., et al., Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 2017. 149: p. 51-62. 13. Hassan, M.A., et al., Modulation control over ultrasound-mediated gene delivery: Evaluating the importance of standing waves. Journal of controlled release, 2010. 141(1): p. 70-76. 14. Kinoshita, M. and K. Hynynen, Key factors that affect sonoporation efficiency in in vitro settings: the importance of standing wave in sonoporation. Biochemical and biophysical research communications, 2007. 359(4): p. 860-865. 15. Pfaffenberger, S., et al., 2MHz ultrasound enhances t-PA-mediated thrombolysis: comparison of continuous versus pulsed ultrasound and standing versus travelling acoustic waves. Thrombosis and haemostasis, 2003. 89(03): p. 583-589. 16. Snehota, M., et al., Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. Ultrasonics, 2020. 107: p. 106167. 17. Olisa, S.C., M.A. Khan, and A. Starr, Review of Current Guided Wave Ultrasonic Testing (GWUT) Limitations and Future Directions. Sensors, 2021. 21(3): p. 811. 18. Lee, W., et al., All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation. Biomedical microdevices, 2017. 19(4): p. 1-9. 19. Jiang, X., et al., A review of low-intensity pulsed ultrasound for therapeutic applications. IEEE Transactions on Biomedical Engineering, 2018. 66(10): p. 2704-2718. 20. Stauffer, P.R. and M.M. Paulides, 10.07 - Hyperthermia Therapy for Cancer, in Comprehensive Biomedical Physics, A. Brahme, Editor. 2014, Elsevier: Oxford. p. 115-151. 21. Smith, C., Application of ultrasound in textile wet processing, Phase 1. Final report. 1992, Electric Power Research Inst., Palo Alto, CA (United States); North Carolina …. 22. Stamp, M.E., et al., Acoustotaxis–in vitro stimulation in a wound healing assay employing surface acoustic waves. Biomaterials science, 2016. 4(7): p. 1092-1099. 23. Guo, F., et al., Controlling cell–cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences, 2015. 112(1): p. 43-48. 24. Aubert, V., et al., A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves. Lab on a Chip, 2016. 16(13): p. 2532-2539. 25. Faustmann, H., et al., Measurement of the properties of liquids based on the dispersion of Lamb waves in an acoustic waveguide. Physics Procedia, 2010. 3(1): p. 959-964. 26. Kiefer, D.A., et al., Calculating the full leaky Lamb wave spectrum with exact fluid interaction. The Journal of the Acoustical Society of America, 2019. 145(6): p. 3341-3350. 27. Tijsseling, A., Fluid-structure interaction in liquid-filled pipe systems: a review. Journal of Fluids and Structures, 1996. 10(2): p. 109-146. 28. Harb, M. and F. Yuan, A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves. Ultrasonics, 2015. 61: p. 62-70. 29. Park, S.-J., H.-W. Kim, and Y.-S. Joo, Leaky Lamb Wave Radiation from a Waveguide Plate with Finite Width. Applied Sciences, 2020. 10(22): p. 8104. 30. Chu, Y.-C., et al., Design of an ultrasound chamber for cellular excitation and observation. The Journal of the Acoustical Society of America, 2019. 145(6): p. EL547-EL553. 31. Harris, G.R., A discussion of procedures for ultrasonic intensity and power calculations from miniature hydrophone measurements. Ultrasound in medicine biology, 1985. 11(6): p. 803-817. 32. Nelson, T.R., et al., Ultrasound biosafety considerations for the practicing sonographer and sonologist. 2009. 33. Charbonneau, J., et al., A-weighting the equal loudness contours. J. Acoust. Soc. Amer., 2012. 131(4): p. 3502-3508. 34. Rubin, D.M., et al., On the Behaviour of Living Cells under the Influence of Ultrasound. Fluids, 2018. 3(4): p. 82. 35. Culjat, M.O., et al., A review of tissue substitutes for ultrasound imaging. Ultrasound Med Biol, 2010. 36(6): p. 861-73. 36. Rathod, V.T., A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers. Sensors, 2020. 20(14): p. 4051. 37. Franco, E.E., et al. ACOUSTIC TRANSMISSION WITH MODE CONVERSION PHENOMENON. 2005. 38. Njeh, C.F., C.M. Boivin, and C.M. Langton, The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int, 1997. 7(1): p. 7-22. 39. Mast, T.D., Empirical relationships between acoustic parameters in human soft tissues. Acoustics Research Letters Online-arlo, 2000. 1: p. 37-42. 40. Wikipedia contributors, Acoustic wave equation, in Wikipedia, The Free Encyclopedia. 41. Dalecki, D., Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng, 2004. 6: p. 229-48. 42. Doherty, J.R., et al., Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control, 2013. 60(4): p. 685-701. 43. Nightingale, K., Acoustic Radiation Force Impulse (ARFI) Imaging: a Review. Curr Med Imaging Rev, 2011. 7(4): p. 328-339. 44. Pitt, W.G., G.A. Husseini, and B.J. Staples, Ultrasonic drug delivery--a general review. Expert Opin Drug Deliv, 2004. 1(1): p. 37-56. 45. Wu, J., Acoustic Streaming and Its Applications. Fluids, 2018. 3(4): p. 108. 46. Sn hota, M., et al., Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. Ultrasonics, 2020. 107: p. 106167. 47. Coussios, C. and R.A. Roy, Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery. Annual Review of Fluid Mechanics, 2008. 40: p. 395-420. 48. Ghorbani, M., et al., Review on Lithotripsy and Cavitation in Urinary Stone Therapy. IEEE Rev Biomed Eng, 2016. 9: p. 264-83. 49. Şen, T., O. Tüfekçioğlu, and Y. Koza, Mechanical index. Anatolian journal of cardiology, 2015. 15(4): p. 334-336. 50. Wikipedia contributors, Mechanical index, in Wikipedia, The Free Encyclopedia. 51. Manbachi, A. and R.S.C. Cobbold, Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection. Ultrasound, 2011. 19(4): p. 187-196. 52. Sezer, N. and M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 2021. 80: p. 105567. 53. Shivashankar, P. and S. Gopalakrishnan, Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Materials and Structures, 2020. 29(5): p. 053001. 54. Gerhard, R., Piezoelectricity and Electrostriction, in Electromechanically Active Polymers: A Concise Reference, F. Carpi, Editor. 2016, Springer International Publishing: Cham. p. 489-507. 55. Liu, H., et al., A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 2018. 5(4): p. 041306. 56. Priya, S., et al., A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvesting and Systems, 2017. 4(1): p. 3-39. 57. Chen, C.J., et al., Three-electrode self-actuating self-sensing quartz cantilever: Design, analysis, and experimental verification. Review of Scientific Instruments, 2010. 81(5): p. 053702. 58. Galanko, M.E., et al., AT-Cut Quartz Piezoelectric Transformers for Passive Voltage Gain in an RF Front-End. IEEE Electron Device Letters, 2019. 40(10): p. 1670-1673. 59. Lam, C.S., et al. A Review of the Recent Development of Temperature Stable Cuts of Quartz for SAW Applications. 2004. 60. Pohanka, M., Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials (Basel, Switzerland), 2018. 11(3): p. 448. 61. Skládal, P., Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. Journal of the Brazilian Chemical Society, 2003. 14: p. 491-502. 62. Panda, P.K. and B. Sahoo, PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics, 2015. 474(1): p. 128-143. 63. Trolier-McKinstry, S., et al., High-Performance Piezoelectric Crystals, Ceramics, and Films. Annual Review of Materials Research, 2018. 48(1): p. 191-217. 64. Zhu, X., Piezoelectric ceramic materials processing, properties, characterization, and applications. Materials science and technologies. 2010, Hauppauge, N.Y: Nova Science Publishers. 65. Pramanik, S., B. Pingguan-Murphy, and N. Osman. Developments of Immobilized Surface Modified Piezoelectric Crystal Biosensors for Advanced Applications. 2013. 66. Ferreira, A.M., et al., Collagen for bone tissue regeneration. Acta Biomaterialia, 2012. 8(9): p. 3191-3200. 67. Fukada, E., History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control, 2000. 47(6): p. 1277-90. 68. Puppi, D., et al., Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010. 35(4): p. 403-440. 69. Ahn, A.C. and A.J. Grodzinsky, Relevance of collagen piezoelectricity to 'Wolff's Law': a critical review. Medical engineering physics, 2009. 31(7): p. 733-741. 70. Vergara, M., et al., Differential effect of culture temperature and specific growth rate on CHO cell behavior in chemostat culture. PloS one, 2014. 9(4): p. e93865-e93865. 71. Bloemkolk, J.-W., et al., Effect of temperature on hybridoma cell cycle and MAb production. Biotechnology and Bioengineering, 1992. 40(3): p. 427-431. 72. Wikipedia contributors, Ernst Chladni, in Wikipedia, The Free Encyclopedia. 73. Baharin, N.H. and R.A. Rahman. EFFECT OF ACCELEROMETER MASS ON THIN PLATE VIBRATION. 2009. 74. Ergut, A. and G. Altintas, Effect of application area distributions of mass, force, and support on free and forced vibration behavior of viscoelastically supported plates. Journal of Vibration and Control, 2012. 19(9): p. 1386-1394. 75. Zhang, P., et al., A Study on the Effects of Local Added Masses on the Natural and the Sound Radiation Characteristics of Thin Plate Structures. Transactions of Famena, 2016. 40: p. 25-39. 76. Schandelmaier, S., et al., Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. Bmj, 2017. 356: p. j656. 77. Fu, D., et al., Influence of Shear Stress on Behaviors of Piezoelectric Voltages in Bone. Journal of Applied Biomechanics, 2012. 28(4): p. 387. 78. Fukada, E., Piezoelectricity of biopolymers. Biorheology, 1995. 32(6): p. 593-609. 79. Fukada, E., Research on bioelectromechanics for 70 years. Journal of Biorheology, 2016. 30(1): p. 1-5. 80. Chrysafides, S.M., S. Bordes, and S. Sharma, Physiology, Resting Potential, in StatPearls. 2021, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL). 81. Barnett, M.W. and P.M. Larkman, The action potential. Pract Neurol, 2007. 7(3): p. 192-7. 82. Bean, B., The action potential in mammalian central neurons. Nature Reviews Neuroscience, 2007. 8: p. 451-465. 83. Harvey, V.L. and A.H. Dickenson, EPSPs and IPSPs, in Encyclopedia of Psychopharmacology, I.P. Stolerman, Editor. 2010, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 489-489. 84. Wikipedia contributors, Excitatory postsynaptic potential, in Wikipedia, The Free Encyclopedia. 85. Wikipedia contributors, Inhibitory postsynaptic potential, in Wikipedia, The Free Encyclopedia. 86. Purves, D. and S.M. Williams, Neuroscience. 2nd edition. 2001: Sinauer Associates 2001. 87. Vitriol, E.A. and J.Q. Zheng, Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron, 2012. 73(6): p. 1068-81. 88. Kerstein, P.C., R.H.I.V. Nichol, and T.M. Gomez, Mechanochemical regulation of growth cone motility. Frontiers in cellular neuroscience, 2015. 9: p. 244-244. 89. Franze, K. and J. Guck, The biophysics of neuronal growth. Reports on Progress in Physics, 2010. 73(9): p. 094601. 90. Ozdas, M.S., et al. Non-invasive molecularly-specific millimeter-resolution manipulation of brain circuits by ultrasound-mediated aggregation and uncaging of drug carriers. Nature communications, 2020. 11, 4929 DOI: 10.1038/s41467-020-18059-7. 91. Lim, J., et al., ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. bioRxiv, 2020: p. 2020.07.10.196634. 92. Ming, G.-L. and H. Song, Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 2011. 70(4): p. 687-702. 93. Jessen, N.A., et al., The Glymphatic System: A Beginner's Guide. Neurochem Res, 2015. 40(12): p. 2583-99. 94. Beisteiner, R. and A.M. Lozano, Transcranial Ultrasound Innovations Ready for Broad Clinical Application. Advanced Science, 2020. 7(23): p. 2002026. 95. Baek, H., K.J. Pahk, and H. Kim, A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett, 2017. 7(2): p. 135-142. 96. O'Neil, H.T., Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 1949. 21(5): p. 516-526. 97. Kossoff, G., Analysis of focusing action of spherically curved transducers. Ultrasound in Medicine Biology, 1979. 5(4): p. 359-365. 98. Krishna, V., F. Sammartino, and A. Rezai, A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol, 2018. 75(2): p. 246-254. 99. Wang, Y., et al., Molecular Imaging in Targeted Therapeutics. Contrast Media #x26; Molecular Imaging, 2018. 2018: p. 3236829. 100. Wei, K.C., et al., Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS One, 2013. 8(3): p. e58995. 101. Shin, J., et al., Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters. Neurosurg Focus, 2018. 44(2): p. E15. 102. Chu, P.C., et al., Neuromodulation accompanying focused ultrasound-induced blood-brain barrier opening. Sci Rep, 2015. 5: p. 15477. 103. Gougheri, H.S., et al., A Comprehensive Study of Ultrasound Transducer Characteristics in Microscopic Ultrasound Neuromodulation. IEEE Trans Biomed Circuits Syst, 2019. 13(5): p. 835-847.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79828-
dc.description.abstract超音波因指向性好、空間解析度高等優點,已大量應用在醫學領域上,而其中低能量超音波提供非侵入性的力學刺激,且具備不會產生嚴重熱效應的好處,故已被用來對細胞、組織甚至活體動物進行大量研究,惟各實驗室自行使用的超音波刺激設備仍有架設過於複雜、聲強度及刺激方式差異大、對生物研究人員操作不友善等問題,尤其是非工程的生物研究人員在使用或架設這些設備上往往會遇到困難,故本研究希望針對這些問題進行改善,自行開發一系列結構緊湊、便於使用且聲強度及刺激方式皆類似的超音波設備,協助生物研究人員進行研究。 而本研究成果共開發出兩套體外實驗設備,分別為Live Image Chamber mini (mini-LIC)、Live Image Chamber Pro (LIC-Pro)以及一套體內實驗設備Focus ultrasound lens。在需要避免溫度效應且大量實驗下可選擇使用mini-LIC,若是需要研究較高強度影響可選擇使用LIC-Pro,若是需要研究超音波對大腦特定區域之神經調控,可選擇使用Focus ultrasound lens,然而這些設備能夠應用的範圍遠遠不止於此,可根據研究人員的不同需要延伸其適用範圍,如將玻璃蓋玻片替換為石英蓋玻片,即可研究壓電效應對細胞之影響,亦或是組合不同中心頻率的超音波裸片來對細胞進行複合刺激,故這些設備可以因應研究方向作靈活地做修改,以滿足研究人員所需。 另外,超音波設備由於本身會涉及聲學、固體力學及電學三個物理耦合,具有較複雜的現象在內,故本研究另一主軸便是以詳細地步驟替各設備建立有限元素模型,這些模型可以被視為是虛擬化的設備,有了這些模型研究人員便可透過模擬更深入了解設備原理或尺寸設計變更之影響。 而本研究也探討較長時間之壓電刺激對類神經細胞N2a產生的影響並觀察其生長之狀況,此外我們也實際對LIC進行修改,將種有N2a細胞蓋玻片下放入半片玻璃及半片石英,以保證每盤細胞皆在相同環境下接受刺激並比較兩邊之差異,如此便可增加實驗可信度。由實驗結果發現壓電刺激確實會影響N2a細胞生長錐動態行為,導致其活動程度增加並使整個細胞生長,同時此研究也間接證明上述設備確實具有靈活修改使用方式之特性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:12:55Z (GMT). No. of bitstreams: 1
U0001-0508202113350300.pdf: 9565423 bytes, checksum: 2d6dd6677a3e1811421010bb958f6b43 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"審定書 I 致謝 II 摘要 IV Abstract V 目錄 VI 圖目錄 XIV 表目錄 XIX 第一章 緒論 1 1.1研究背景 1 1.2低強度超音波刺激載台 2 1.2.1 water tank實驗架設 2 1.2.2 其他超音波刺激系統 4 1.2.2.1微機電刺激系統[18] 4 1.2.2.2超音波壓電PVDF薄膜刺激[9] 5 1.3研究目的 5 第二章 材料與方法 6 2.1超音波介紹 6 2.1.1聲波簡介 6 2.2.2波傳模式 7 2.2.2.1縱波(Longitudinal wave)及橫波(Transverse wave) 7 2.2.2.2表面波(Surface wave) 7 2.2.2.3板波(Plate wave) 8 2.2.2.4洩漏蘭姆波(Leaky Lamb wave) 9 2.2超音波參數 9 2.2.1聲強度(acoustic intensity) 9 2.2.2 聲強級(Sound Intensity Level, SIL) 11 2.2.3佔空比(Duty Factor, DF) 11 2.2.4脈衝重現週期(Pulsed Repetition Period, PRP) 12 2.2.5聲阻抗(acoustic impedance) 13 2.2.6透射(Transmission)、折射(Refraction)及反射(Reflection) 14 2.2.7模態轉換(mode conversion) 17 2.2.8衰減(Attenuation) 18 2.2.9聲輻射力(Acoustic Radiation Force, ARF) 19 2.2.10聲流(Acoustic Streaming) 19 2.2.11空蝕(Cavitation) 19 2.2.12機械指數(Mechanical Index) 20 2.3壓電效應介紹 21 2.3.1壓電效應的發現 21 2.3.2壓電效應原理 21 2.3.3壓電材料介紹 22 2.4溫度量測 24 2.5聲場強度量測 25 2.5.1水聽器 25 2.5.2波形產生器 26 2.5.3功率放大器 27 2.5.4示波器 27 2.5.5脈衝產生接收器 27 2.6模態驗證 28 2.6.1雲母粉 28 2.6.2 Cellex 超音波訊號輸出器 29 2.7水聽器校正 30 2.7.1校正用設備 30 2.7.2校正方法 30 2.7.3校正設備架設 31 2.7.4強度計算方法 32 2.7.4.1正弦波輸入 32 2.7.4.2非正弦波輸入 33 2.7.4.3比較 34 第三章 LIC驗證 36 3.1 LIC介紹 36 3.2設備驗證 36 3.2.1溫度量測結果 36 3.2.2強度量測結果 37 3.2.3聲場分佈量測結果 38 3.2.4模態驗證結果 38 3.3有限元素法模擬 39 3.3.1幾何建模 39 3.3.2物理域與邊界條件指定 39 3.3.2.1聲學 39 3.3.2.2固體力學 40 3.3.2.3靜電 41 3.3.2.4多重物理耦合 42 3.3.3網格及求解設定 42 3.3.4求解結果 43 3.3.4.1電壓分佈 43 3.3.4.2位移場 43 3.3.4.3聲壓場 44 3.4討論 45 3.4.1模態比較 45 3.4.2聲場比較 45 3.4.3實際使用問題 45 3.4.3.1收納問題 45 3.4.3.2培養液消耗問題 46 3.4.3.3 O形環脫落問題 46 3.5結論 47 第四章 mini-LIC設計與驗證 48 4.1 mini-LIC設計概念 48 4.2 mini-LIC結構設計 48 4.2.1組立概念 48 4.2.2底座設計 49 4.2.3上環設計 50 4.3設備驗證 50 4.3.1加工結果 50 4.3.2溫度量測結果 51 4.3.3強度量測結果 51 4.3.4聲場分佈量測結果 52 4.3.5模態驗證結果 52 4.4有限元素法模擬 53 4.4.1幾何建模 53 4.4.2物理域指定 53 4.4.2.1聲學 53 4.4.2.2固體力學 54 4.4.2.3靜電學 55 4.4.2.4多重物理耦合 56 4.4.3網格及求解設定 56 4.4.4求解結果 57 4.4.4.1電壓分佈 57 4.4.4.2位移場 57 4.4.4.3聲壓場 58 4.5討論 59 4.5.1模態比較 59 4.5.2聲場比較 61 4.5.3培養液使用量比較 61 4.5.4 O形環卡固比較 62 4.6小鼠初代軟骨細胞增生實驗(由臺大醫工所劉禹呈提供) 63 4.7結論 64 第五章 LIC-Pro設計與驗證 65 5.1 LIC-Pro設計概念 65 5.2 LIC-Pro結構設計 65 5.2.1組立概念 65 5.2.2超音波傳遞路徑 66 5.2.3上環設計 66 5.2.4密封環選用(CNL seals, Taipei, Taiwan) 67 5.3設備驗證 67 5.3.1加工結果 67 5.3.2溫度量測結果 68 5.3.3強度量測結果 68 5.3.4聲場分佈量測結果 69 5.3.5模態驗證結果 69 5.4有限元素法模擬 70 5.4.1幾何建模 70 5.4.2物理域指定 70 5.4.2.1聲學 70 5.4.2.2固體力學 71 5.4.2.3靜電學 72 5.4.2.4多重物理耦合 73 5.4.3網格及求解設定 73 5.4.4求解結果 74 5.4.4.1電壓分佈 74 5.4.4.2位移場 74 5.4.4.3聲壓場 75 5.5討論 75 5.5.1模態比較 75 5.5.2聲場比較 76 5.6生物實驗結果(由臺大醫工所曾牧群提供) 76 5.6.1實驗目的 76 5.6.2實驗方法 76 5.6.2.1細胞準備 76 5.6.2.2實驗流程 77 5.6.3實驗結果 77 5.7結論 79 第六章 壓電刺激對細胞之影響 80 6.1緒論 80 6.2生物體內壓電材料 80 6.3小鼠初代軟骨細胞實驗(由臺大醫工所劉禹呈提供) 81 6.3.1實驗設計 81 6.3.2細胞準備 81 6.3.3使用設備 81 6.3.4結果與討論 81 6.4小鼠神經母細胞瘤細胞(Neuron-2a cell, N2a cell)生長實驗 82 6.4.1實驗設計 83 6.4.2生長錐觀測 84 6.4.3使用設備 84 6.4.3.1 modified-LIC 84 6.4.3.2 CO2環境維持上蓋 85 6.4.3.3客製化載台 86 6.4.3.4 Cellex 86 6.4.4實驗架設 87 6.4.6設備驗證 87 6.4.6.1不同頻率差異 87 6.4.6.2可視化電場 89 6.4.7結果與討論(由中研院生醫所莊育嘉博士提供) 91 6.4.8未來展望 92 第七章 聚焦超音波透鏡設計與驗證 93 7.1緒論 93 7.2聚焦透鏡設計 94 7.2.1球面透鏡公式 94 7.2.1.1設計方法 94 7.2.1.2模擬驗證 96 7.2.2球面透鏡簡化公式 97 7.2.2.1設計方法 97 7.2.2.2模擬驗證 99 7.2.3迭代法 100 7.2.3.1設計方法 100 7.2.3.2模擬驗證 101 7.2.4綜合比較 102 7.2.4.1折射率影響 102 7.2.4.2焦距影響 103 7.2.4.3焦點特性 104 7.2.4.4不同步階值對焦點影響 104 7.3透鏡結構設計(由臺大醫工所何建穎提供) 105 7.3.1穿顱效應影響 105 7.3.2 組立概念 106 7.3.3 透鏡設計 106 7.3.4套筒設計 107 7.4設備驗證 107 7.4.1加工結果 107 7.4.2聲場分佈 108 7.5小鼠大腦刺激實驗(由臺大醫工所黃少湘提供) 109 7.5.1實驗目的 109 7.5.2實驗流程 109 7.5.3預期結果 110 7.6結論 111 第八章 其他設備模擬 112 8.1 water tank刺激裝置介紹 112 8.2 water tank 驗證 113 8.2.1強度量測結果 113 8.2.2聲場量測結果 114 8.3有限元素法模擬 114 8.3.1幾何建模 114 8.3.2物理域與邊界條件指定 115 8.3.2.1聲學 115 8.3.2.2固體力學 116 8.3.2.3靜電 117 8.2.3.4網格與求解設定 119 8.1.4求解結果 122 8.1.4.1電壓波形 122 8.1.4.3截面聲場分佈 125 8.1.4.4可視化超音波 126 8.1.5討論 129 第九章 結論與未來展望 130 9.1結論 130 9.1.1設備整理 130 9.1.2有限元素法之角色 132 9.1.2.1分析方面 132 9.1.2.2設計方面 132 9.1.2.3作為實際實驗之替代方案 132 9.2未來展望 133 參考文獻 134 "
dc.language.isozh-TW
dc.subject微能量超音波zh_TW
dc.subject超音波刺激zh_TW
dc.subject壓電刺激zh_TW
dc.subject有限元素法zh_TW
dc.subjectvery-low-intensity ultrasounden
dc.subjectUltrasound stimulationen
dc.subjectPiezoelectric stimulationen
dc.subjectFinite element methoden
dc.title超音波刺激裝置設計與模擬zh_TW
dc.titleThe design and simulation of ultrasonic stimulation devicesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李百祺(Hsin-Tsai Liu),劉浩澧(Chih-Yang Tseng)
dc.subject.keyword超音波刺激,壓電刺激,有限元素法,微能量超音波,zh_TW
dc.subject.keywordUltrasound stimulation,Piezoelectric stimulation,Finite element method,very-low-intensity ultrasound,en
dc.relation.page138
dc.identifier.doi10.6342/NTU202102108
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0508202113350300.pdf9.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved