請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國峰(Gwo-Fong Lin) | |
| dc.contributor.author | Jhao-Yu Chen | en |
| dc.contributor.author | 陳昭宇 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:12:13Z | - |
| dc.date.available | 2021-09-01 | |
| dc.date.available | 2022-11-23T09:12:13Z | - |
| dc.date.copyright | 2021-09-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-10 | |
| dc.identifier.citation | Karki R, Srivastava P, Kalin L, Mitra S, Singh S (2021) Assessment of impact in groundwater levels and stream-aquifer interaction due to increased groundwater withdrawal in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin using MODFLOW. Journal of Hydrology: Regional Studies 34:100802 Lyazidi R, Hessane M, Filali Moutei J, Bahirc M (2020) Developing a methodology for estimating the groundwater levels of coastal aquifers in the Gareb-Bourag plains, Morocco embedding the visual MODFLOW techniques in groundwater modeling system. Groundwater for Sustainable Development 11:3–4 Jafari T, S.Kiem A, Javadi S, Nakamura T, Nishida K (2021) Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration too. Journal of Hydrology: Regional Studies 35:100822 Adamowski J, Chan F (2011) A wavelet neural network conjunction model for groundwater level forecasting J Hydrol 407: 28–40 Barzegar R, Fijani E, Asghari Moghaddam A, Tziritis E (2017) Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network based Models. Sci Total Environ 599–600:20–31 Chang F, Chang L, Huang C, Kao (2016) Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J Hydrol 541: 965–976 Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229–240 Feng S, Kang S, Huo Z, Chen S, Mao X (2008) Neural networks to simulate regional groundwater levels affected by human activities. Groundwater 46:80–90. Fallah-Mehdipour E, Bozorg Haddad O, Marino MA (2013) Prediction and simulation of monthly groundwater levels by genetic programming. J Hydro-environ Res 7:253–260 Gholami V, Chau KW, Fadaee F, Torkaman J, Ghaffari A (2015) Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J Hydrol 529(3):1060–1069 Ghose D, Das U, Roy P (2018) Modeling response of runoff and evapotranspiration for predicting water table depth in arid region using dynamic recurrent neural network. Groundwater for Sustainable Development 6:263–269 Han JC, Huang Y, Li Z, Zhao C, Cheng G (2016) Groundwater level prediction using a SOM-aided stepwise cluster inference model. J Environ Manage 182: 308–321 Juan C, Genxu W, Tianxu M (2015) Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. J Hydrol 529:1211–1220 Lallahem S, Mania J, Hani A, Najjar Y (2005) On the use of neural networks to evaluate groundwater levels in fractured media. J Hydrol 307:92–111 Maheswaran R, Khosa R (2013) Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics. Comput Geosci 52:422–436 Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27:1301–1321 Moosavi V, Vafakhah M, Shirmohammadi B, Ranjbar M (2014) Optimization of Wavelet-ANFIS and Wavelet-ANN Hybrid Models by Taguchi Method for Groundwater Level Forecasting. Arab J Sci Eng39:1785–1796 Mukherjee A, Ramachandran P (2018) Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: analysis of comparative performances of SVR, ANN and LRM. J Hydrol 558:647–658 Nayak PC, Satyaji Rao YR, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20:77–90 Nourani V, Asghari Mogaddam A, Nadiri AO (2008) An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process 22:5054–5066. Nourani V, Ejlali RG, Alami MT (2011) Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics Model: a case study. J Environ Eng 28 (3):217–228. Nourani V, Alami MT, Daneshvar Vousoughi F (2015) Wavelet-entropy data preprocessing approach for ANN-based groundwater level modeling. J Hydrol 524:255–269 Sahoo S, Jha MK (2013) Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. J Hydrol 21:1865–1887. Shiri J, Kisi O, Yoon H, Lee KK, Nazemi AH (2013) Predicting groundwater level fluctuations with meteorological effect implications – a comparative study among soft computing techniques. Comput Geosci 56:32–44. Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27 (2):419–432. Sreekanth PD, Sreedevi PD, Ahmed S, Geethanjali N (2011) Comparison of FFNN and ANFIS models for estimating groundwater level. Environ Earth Sci 62:1301–1310. Tang Y, Zang C, Wei Y, Jiang M (2018) Data-driven modeling of groundwater level with least-square support vector machine and spatial–temporal analysis. Geotechnical and Geological Engineering 37:1661–1670 Taormina R, Chau K, Sethi R (2012) Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intel 25:1670–1676 Vapnik V (1998) Statistical Learning Theory:736 Wunsch A, Liesch T, Broda S (2018) Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J Hydrol 567:743–758 Yu H, Wen X, Feng Q, Deo RC, Si J, Wu M (2018) Comparative study of hybridwavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, northwest China. Water Resour Manag 32 (1):301–323. Zare M, Koch M (2018) Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: application to the Miandarband plain. J Hydro-environ Res 18:63–76 Rajaee T, Ebrahimi H, Nourani V (2019) A review of the artificial intelligence methods in groundwater level modeling. J Hydrol 572:336–351 Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20:273–297 Nussbaumer HJ (1981) Fast Fourier Transform and Convolution Algorithms 黃明哲和潘國樑(1987)行政院國家科學委員會防災科技研究報告第75–51號 黃雅喬(2015)崩塌潛勢分析方法之研究-以高屏溪流域為例。臺灣大學土木工程學研究所學位論文 邱德維(2010) 多測站日降雨量繁衍模式之研究。水利及海洋工程學系碩士班學位論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79810 | - |
| dc.description.abstract | 本研究主要目的在於建立桃園地下水位長期預報模式。第一,以氣象局一步法海氣耦合氣候模式(TCWB1T1),配合桃園地區氣象站資料,以最近鄰居法將大尺度日雨量尺度降至流域尺度。第二,使用傅立葉轉換及小波轉換,分析地下水抽補強度。最後使用第一步的雨量與第二步的抽補強度和30口井水位資料,建置準確且穩定的地下水水位長期預報模式,提供機率式預報和優選後的定率式預報。 本研究使用支援向量機進行預報。第一含水層輸入因子為雨量、平均抽補強度和自身地下水水位;第二至第四含水層使用附近上一層觀測井或同層較上游觀測井的預報結果代替雨量,因此第二到四層使用鄰近扇頂的觀測井水位、淺層觀測井水位、抽補強度和自身的水位進行建模;最後結合多步階預報,透過反覆迭代預報出的地下水位作為輸入項預報出未來180日的地下水位。 本研究中之雨量降尺度為機率式預報,結果顯示絕大多數觀測雨量都在本研究提出之預報範圍內。而地下水位預報因旱季降雨和地下水位的不確定性都較小,因此旱季比溼季更準確;此外,淺層水位資料較深層更多更完整,淺層預報結果較深層佳。本研究預報較為長期,在選擇定率式預報時,較難在旱季時選擇出符合未來180日後濕季的定率式預報,因此時間越長機率式預報的參考性會越高。本研究所發展之地下水位預報模式穩定且準確,可提供未來長地下水位趨勢預判資訊,作為抗旱期間相關因應措施之決策輔助參考。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:12:13Z (GMT). No. of bitstreams: 1 U0001-0708202102412200.pdf: 13303468 bytes, checksum: 435eafad6a0eb68e33af03741f1cd0a8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 iii 中文摘要 iii Abstract iv 圖目錄 viii 表目錄 xii 一、 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 地下水位預報 3 1.2.2 訊號分析應用方法 5 1.3 論文架構 7 二、 研究區域與資料 8 2.1 研究區域 8 2.1.1 研究區域位置與地形 8 2.1.2 研究區域地質特性 14 2.1.3 研究區域地下水使用情況 18 2.2 研究資料 19 2.2.1 觀測井水位資料 19 2.2.2 氣象站資料 20 2.2.3 天氣預報資料 22 三、 研究方法 23 3.1 抽補強度分析 23 3.1.1 傅立葉轉換 23 3.1.2 小波轉換 25 3.2 空間尺度KNN 26 3.3 預報模式 28 3.3.1 支援向量機SVM 28 3.3.2 多步階預報MSF 30 3.4 研究流程與評鑑指標 31 3.4.1 研究流程 31 3.4.2 評鑑指標 33 四、 結果與討論 35 4.1 抽補強度結果 35 4.1.1 傅立葉分析結果 35 4.1.2 小波分析結果 40 4.1.3 傅立葉與小波分析的驗證與比較 48 4.2 KNN雨量降尺度結果 51 4.2.1 KNN驗證結果 51 4.2.2 KNN未來雨量繁衍結果 54 4.3 地下水預報結果 56 4.3.1 輸入項相關性分析 56 4.3.2 模式驗證結果 60 4.3.3 水位預報結果 66 五、 結論與建議 82 5.1 結論 82 5.2 建議 83 參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地下水位預報 | zh_TW |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | 抽補強度 | zh_TW |
| dc.subject | 最近鄰居法 | zh_TW |
| dc.subject | 多步階預報 | zh_TW |
| dc.subject | Support vector machine | en |
| dc.subject | KNN | en |
| dc.subject | Pumping recovery strength | en |
| dc.subject | Groundwater level | en |
| dc.subject | Multi-step forecasting | en |
| dc.title | 結合第一代海氣耦合模式和機器學習發展長期地下水預報 | zh_TW |
| dc.title | Long-term groundwater level forecasting based on the integration of TCWB1T1 output and machine learning | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李方中(Hsin-Tsai Liu),賴進松(Chih-Yang Tseng),林文欽 | |
| dc.subject.keyword | 地下水位預報,抽補強度,多步階預報,最近鄰居法,支援向量機, | zh_TW |
| dc.subject.keyword | Groundwater level,Pumping recovery strength,KNN,Multi-step forecasting,Support vector machine, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU202102170 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0708202102412200.pdf | 12.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
