請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79791完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱有花(Chu You-Hua) | |
| dc.contributor.author | Ching-Yao Tang | en |
| dc.contributor.author | 湯景堯 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:11:30Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.available | 2022-11-23T09:11:30Z | - |
| dc.date.copyright | 2021-09-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-24 | |
| dc.identifier.citation | Tom Abel and Benjamin D Wandelt. Adaptive ray tracing for radiative transfer around point sources. Monthly Notices of the Royal Astronomical Society, 330(3):L53–L56, 2002. Tom Abel, Peter Anninos, Yu Zhang, and Michael L Norman. Modelling primordial gas in numerical cosmology. New Astronomy, 2(3):181–207, 1997. Tom Abel, Michael L Norman, and Piero Madau. Photon-conserving radiative transfer around point sources in multidimensional numerical cosmology. The Astrophysical Journal, 523(1):66, 1999. Tom Abel, Greg L Bryan, and Michael L Norman. The formation of the first star in the universe. science, 295(5552):93–98, 2002. Tom Abel, John H Wise, and Greg L Bryan. The h ii region of a primordial star. The Astrophysical Journal Letters, 659(2):L87, 2007. Peter Anninos, Yu Zhang, Tom Abel, and Michael L Norman. Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling. New Astronomy, 2(3):209–224, 1997. Marsha J Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of computational Physics, 82(1):64–84, 1989. Volker Bromm. Formation of the first stars. Reports on Progress in Physics, 76(11): 112901, 2013. Volker Bromm, Paolo S Coppi, and Richard B Larson. The formation of the first stars. i. the primordial star-forming cloud. The Astrophysical Journal, 564(1):23, 2002. Volker Bromm, Naoki Yoshida, Lars Hernquist, and Christopher F McKee. The formation of the first stars and galaxies. Nature, 459(7243):49–54, 2009. Greg L Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology. Computing in Science Engineering, 1(2):46–53, 1999. Greg L Bryan and Michael L Norman. A hybrid amr application for cosmology and astrophysics. In Structured Adaptive Mesh Refinement (SAMR) Grid Methods, pages 165–170. Springer, 2000. Greg L Bryan, Michael L Norman, Brian W O’Shea, Tom Abel, John H Wise, Matthew J Turk, Daniel R Reynolds, David C Collins, Peng Wang, Samuel W Skillman, et al. Enzo: An adaptive mesh refinement code for astrophysics. The Astrophysical Journal Supplement Series, 211(2):19, 2014. Renyue Cen and Jeremiah P Ostriker. Galaxy formation and physical bias. The Astrophysical Journal, 399:L113–L116, 1992. Gilles Chabrier. Galactic stellar and substellar initial mass function. Publications of the Astronomical Society of the Pacific, 115(809):763, 2003. Phillip Colella and Paul R Woodward. The piecewise parabolic method (ppm) for gas dynamical simulations. Journal of computational physics, 54(1):174–201, 1984. Thomas H Greif, Volker Springel, Simon DM White, Simon CO Glover, Paul C Clark, Rowan J Smith, Ralf S Klessen, and Volker Bromm. Simulations on a moving mesh: the clustered formation of population iii protostars. The Astrophysical Journal, 737(2): 75, 2011a. Thomas H Greif, Simon DM White, Ralf S Klessen, and Volker Springel. The delay of population iii star formation by supersonic streaming velocities. The Astrophysical Journal, 736(2):147, 2011b. Thomas H Greif, Volker Bromm, Paul C Clark, Simon CO Glover, Rowan J Smith, Ralf S Klessen, Naoki Yoshida, and Volker Springel. Formation and evolution of primordial proto-stellar systems. Monthly Notices of the Royal Astronomical Society, 424(1):399– 415, 2012. Philipp Grete, Dimitar G Vlaykov, Wolfram Schmidt, and Dominik RG Schleicher. Comparative statistics of selected subgrid-scale models in large-eddy simulations of decaying, supersonic magnetohydrodynamic turbulence. Physical Review E, 95(3):033206, 2017. Shingo Hirano, Takashi Hosokawa, Naoki Yoshida, Hideyuki Umeda, Kazuyuki Omukai, Gen Chiaki, and Harold W Yorke. One hundred first stars: Protostellar evolution and the final masses. The Astrophysical Journal, 781(2):60, 2014. Shingo Hirano, Takashi Hosokawa, Naoki Yoshida, Kazuyuki Omukai, and Harold W Yorke. Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological haloes and the stellar mass distribution. Monthly Notices of the Royal Astronomical Society, 448(1):568–587, 2015. Roger W Hockney and James W Eastwood. Computer simulation using particles. crc Press, 1988. Takashi Hosokawa, Shingo Hirano, Rolf Kuiper, Harold W Yorke, Kazuyuki Omukai, and Naoki Yoshida. Formation of massive primordial stars: Intermittent uv feedback with episodic mass accretion. The Astrophysical Journal, 824(2):119, 2016. Miho N Ishigaki, Nozomu Tominaga, Chiaki Kobayashi, and Ken'ichi Nomoto. The initial mass function of the first stars inferred from extremely metal-poor stars. The Astrophysical Journal, 857(1):46, 2018. Alexei G Kritsuk, Michael L Norman, and Paolo Padoan. Adaptive mesh refinement for supersonic molecular cloud turbulence. The Astrophysical Journal Letters, 638(1):L25, 2006. Richard B Larson and Volker Bromm. The first stars in the universe. Scientific American, 285(6):64–71, 2001. Massimo Stiavelli. From First Light to Reionization. WileyVCH, 2009. Ian D McGreer and Greg L Bryan. The impact of hd cooling on the formation of the first stars. The Astrophysical Journal, 685(1):8, 2008. Christopher F McKee and Jonathan C Tan. The formation of the first stars. II. radiative feedback processes and implications for the initial mass function. The Astrophysical Journal, 681(2):771, 2008. Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. The structure of cold dark matter halos. The Astrophysical Journal, 462:563, 1996. Michael L Norman. Population iii star formation and imf. In AIP Conference Proceedings, volume 990, pages 3–15. American Institute of Physics, 2008. Michael L Norman and Greg L Bryan. Cosmological adaptive mesh refinement. In Numerical Astrophysics, pages 19–28. Springer, 1999. Jan H Orkisz, Jérôme Pety, Maryvonne Gerin, Emeric Bron, Viviana V Guzmán, Sébastien Bardeau, Javier R Goicoechea, Pierre Gratier, Franck Le Petit, François Levrier, et al. Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in orion b. Astronomy Astrophysics, 599:A99, 2017. Anna L Rosen, Stella SR Offner, Sarah I Sadavoy, Asmita Bhandare, Enrique Vázquez-Semadeni, and Adam Ginsburg. Zooming in on individual star formation: Low-and-high-mass stars. Space Science Reviews, 216:1–42, 2020. Wolfram Schmidt, Wolfgang Hillebrandt, and Jens C Niemeyer. Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence. Computers Fluids, 35(4):353–371, 2006. Wolfram Schmidt, Christoph Federrath, Markus Hupp, Sebastian Kern, and Jens C Niemeyer. Numerical simulations of compressively driven interstellar turbulenceI. isothermal gas. Astronomy Astrophysics, 494(1):127–145, 2009. Max Tegmark, Joseph Silk, Martin J Rees, Alain Blanchard, Tom Abel, and Francesco Palla. How small were the first cosmological objects? The Astrophysical Journal, 474 (1):1, 1997. Dmitriy Tseliakhovich and Christopher Hirata. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Physical Review D, 82(8):083520, 2010. Hideyuki Umeda and Ken'ichi Nomoto. Variations in the abundance pattern of extremely metalpoor stars and nucleosynthesis in population iii supernovae. The Astrophysical Journal, 619(1):427, 2005. Bram Van Leer. Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. Journal of computational physics, 23(3):276–299, 1977. John H Wise and Tom Abel. Enzo+ moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. Monthly Notices of the Royal Astronomical Society, 414(4):3458–3491, 2011. Naoki Yoshida. Formation of the first generation of stars and blackholes in the universe. Proceedings of the Japan Academy, Series B, 95(1):17–28, 2019. Naoki Yoshida, Tom Abel, Lars Hernquist, and Naoshi Sugiyama. Simulations of early structure formation: Primordial gas clouds. The Astrophysical Journal, 592(2):645, 2003. Naoki Yoshida, Kazuyuki Omukai, and Lars Hernquist. Protostar formation in the early universe. Science, 321(5889):669–671, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79791 | - |
| dc.description.abstract | 第一代恆星(第三類恆星)在早期宇宙的演化中扮演了極為重要角色。因此,瞭解它們形成機制背後的物理過程能讓我們更進一步探索早期宇宙的演化。過去的宇宙學模擬認為第三類恆星的特徵質量應為100太陽質量以上,然而目前的極貧金屬恆星觀測推測其特徵質量應為25太陽質量左右,兩者之間明顯有其矛盾之處。在恆星形成過程中,對於紊流的小尺度流體力學結構的缺乏可能是造成此差異的原因之一。我們使用自適應網格細化程式Enzo和stochastic forcing模型來模擬原初紊流在迷你暗暈中的吸積過程與在紊流中的不均勻氣體的恆星形成以驗證紊流對此問題的影響。在我們的模擬中,所有相關的重要物理均被考量進來了,如:自重力、原初氣體冷卻、第三類恆星形成和輻射反饋。在此,我們探討模型所產生的紊流原初氣體之性質和第三類恆星形成演算法是如何被紊流強度和恆星形成的數值參數所影響。瞭解這些知識將會成為我們進一步研究第三代恆星的基石。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:11:30Z (GMT). No. of bitstreams: 1 U0001-1008202110201000.pdf: 20407478 bytes, checksum: b5c4bb69619bddf0bcacace3ea64705d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xv Chapter 1 Introduction 1 Chapter 2 Numerical Methodology 5 2.1 Enzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Stochastic Turbulence Model . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Primordial Gas Chemistry . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 SelfGravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.2 DM Potential Profile . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Pop III Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.1 Star Formation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.2 Initial Mass Function . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 Adaptive Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.7 Simulation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7.1 Driving Turbulence in the Center of Mini-halos . . . . . . . . . . . 15 2.7.2 Star Formation in the Primordial Turbulent Gas Cloud . . . . . . . . 18 Chapter 3 Results 19 3.1 Turbulence in Primordial Gas Cloud . . . . . . . . . . . . . . . . . . 19 3.1.1 Evolution of the Gas System . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Spatial Density Structure . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.3 Mass Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.4 Chemical and Thermal Properties . . . . . . . . . . . . . . . . . . . 34 3.2 Pop III Star Formation within Turbulence . . . . . . . . . . . . . . . 39 3.2.1 Halt of Star Formation . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 Feedback from the Stars . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 4 Discussion 57 4.1 Formation of the Turbulent Primordial Cloud . . . . . . . . . . . . . 57 4.2 Comparison of the Spatial, Chemical, and Thermal Configuration . . 58 4.3 Star Formation and Density Threshold . . . . . . . . . . . . . . . . . 60 Chapter 5 Conclusion 63 References 65" | |
| dc.language.iso | zh-TW | |
| dc.subject | 恆星形成 | zh_TW |
| dc.subject | 第三類恆星 | zh_TW |
| dc.subject | 紊流 | zh_TW |
| dc.subject | 早期宇宙 | zh_TW |
| dc.subject | 宇宙學 | zh_TW |
| dc.subject | 原初氣體冷卻 | zh_TW |
| dc.subject | 輻射轉移 | zh_TW |
| dc.subject | 計算天文物理 | zh_TW |
| dc.subject | Cosmology | en |
| dc.subject | Early universe | en |
| dc.subject | Turbulence | en |
| dc.subject | Population III | en |
| dc.subject | Star formation | en |
| dc.subject | Primordial gas cooling | en |
| dc.subject | Radiative transfer | en |
| dc.subject | omputational astrophysics | en |
| dc.title | 原初星雲的紊流結構對第三類恆星形成之影響 | zh_TW |
| dc.title | The Population III Star Formation within the Turbulent Primordial Cloud | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳科榮(Chen Ke-Jung) | |
| dc.contributor.oralexamcommittee | 李悅寧(Hsin-Tsai Liu),(Chih-Yang Tseng) | |
| dc.subject.keyword | 宇宙學,早期宇宙,紊流,第三類恆星,恆星形成,原初氣體冷卻,輻射轉移,計算天文物理, | zh_TW |
| dc.subject.keyword | Cosmology,Early universe,Turbulence,Population III,Star formation,Primordial gas cooling,Radiative transfer,omputational astrophysics, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202102235 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202110201000.pdf | 19.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
