Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorGuan-Rong Chenen
dc.contributor.author陳冠融zh_TW
dc.date.accessioned2022-11-23T09:11:22Z-
dc.date.available2021-08-20
dc.date.available2022-11-23T09:11:22Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-16
dc.identifier.citation[1] G. V. Research. 'Home Healthcare Market Size, Share Trends Analysis Report By Equipment (Therapeutic, Diagnostic), By Services (Skilled Home Healthcare Services, Unskilled Home Healthcare Services), By Region, And Segment Forecasts, 2020 - 2027.' Grand View Research. https://www.grandviewresearch.com/industry-analysis/home-healthcare-industry (accessed May 9, 2021). [2] World Health Organization. 'The top 10 causes of death.' World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed May 9, 2021). [3] J. Sola et al., 'Noninvasive and nonocclusive blood pressure estimation via a chest sensor,' IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3505-3513, 2013. [4] Y. Choi, Q. Zhang, and S. Ko, 'Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert–Huang transform,' Computers Electrical Engineering, vol. 39, no. 1, pp. 103-111, 2013. [5] T. Ma and Y.-T. Zhang, 'A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects,' in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006: IEEE, pp. 996-999. [6] 高育晟, '以相異位置PPG訊號間脈衝傳遞時間建立血壓量測模型,' 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2020. [7] T. G. Pickering et al., 'Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,' Hypertension, vol. 45, no. 1, pp. 142-161, 2005. [8] P. Kalita and R. Schaefer, 'Mechanical models of artery walls,' Archives of Computational Methods in Engineering, vol. 15, no. 1, pp. 1-36, 2008. [9] C. A. Figueroa and J. D. Humphrey, 'Pressure wave propagation in full-body arterial models: a gateway to exploring aging and hypertension,' Procedia IUTAM, vol. 10, pp. 382-395, 2014. [10] M. A. Weber et al., 'Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension,' Journal of hypertension, vol. 32, no. 1, pp. 3-15, 2014. [11] A. V. Chobanian et al., 'Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure,' hypertension, vol. 42, no. 6, pp. 1206-1252, 2003. [12] J. Booth, 'A short history of blood pressure measurement,' ed: SAGE Publications, 1977. [13] F. W. Stahnisch, 'Instrument transfer as knowledge transfer in neurophysiology: François Magendie's (1783–1855) early attempts to measure cerebrospinal fluid pressure,' Journal of the History of the Neurosciences, vol. 17, no. 1, pp. 72-99, 2008. [14] E. Balestrieri, P. Daponte, and S. Rapuano, 'Open questions on unified approach for calibration of oscillometric blood pressure measurement devices,' in 2009 IEEE International Workshop on Medical Measurements and Applications, 2009: IEEE, pp. 206-211. [15] G. Drzewiecki, R. Hood, and H. Apple, 'Theory of the oscillometric maximum and the systolic and diastolic detection ratios,' Annals of biomedical engineering, vol. 22, no. 1, pp. 88-96, 1994. [16] M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and I. Batkin, 'Oscillometric blood pressure estimation: past, present, and future,' IEEE reviews in biomedical engineering, vol. 8, pp. 44-63, 2015. [17] T. Sato, M. Nishinaga, A. Kawamoto, T. Ozawa, and H. Takatsuji, 'Accuracy of a continuous blood pressure monitor based on arterial tonometry,' Hypertension, vol. 21, no. 6_pt_1, pp. 866-874, 1993. [18] X. Teng and Y. Zhang, 'Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach,' in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), 2003, vol. 4: IEEE, pp. 3153-3156. [19] F. N. Van de Vosse and N. Stergiopulos, 'Pulse wave propagation in the arterial tree,' Annual Review of Fluid Mechanics, vol. 43, pp. 467-499, 2011. [20] J. D. Lane, L. Greenstadt, D. Shapiro, and E. Rubinstein, 'Pulse transit time and blood pressure: an intensive analysis,' Psychophysiology, vol. 20, no. 1, pp. 45-49, 1983. [21] L. Peter, N. Noury, and M. Cerny, 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,' Irbm, vol. 35, no. 5, pp. 271-282, 2014. [22] J. Penaz, 'Instrument for indirect continuous recording of blood pressure,' Cs. patent, vol. 133205, 1969. [23] P. A. Obrist, K. C. Light, J. A. McCubbin, J. S. Hutcheson, and J. L. Hoffer, 'Pulse transit time: Relationship to blood pressure,' Behavior Research Methods Instrumentation, vol. 10, no. 5, pp. 623-626, 1978. [24] P. Fung, G. Dumont, C. Ries, C. Mott, and M. Ansermino, 'Continuous noninvasive blood pressure measurement by pulse transit time,' in The 26th annual international conference of the IEEE engineering in medicine and biology society, 2004, vol. 1: IEEE, pp. 738-741. [25] M. Elgendi et al., 'The use of photoplethysmography for assessing hypertension,' NPJ digital medicine, vol. 2, no. 1, pp. 1-11, 2019. [26] J. Proença, J. Muehlsteff, X. Aubert, and P. Carvalho, 'Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?,' in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: IEEE, pp. 598-601. [27] R. Mukkamala et al., 'Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice,' IEEE Transactions on Biomedical Engineering, vol. 62, no. 8, pp. 1879-1901, 2015. [28] A. Jadooei, O. Zaderykhin, and V. Shulgin, 'Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time,' in 2013 IEEE XXXIII international scientific conference electronics and nanotechnology (ELNANO), 2013: IEEE, pp. 297-301. [29] X. Ding, B. P. Yan, Y.-T. Zhang, J. Liu, N. Zhao, and H. K. Tsang, 'Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation,' Scientific reports, vol. 7, no. 1, pp. 1-11, 2017. [30] H. Pitot, 'Description d’une machine pour mesurer la vitesse des eaux courantes et le sillage des vaisseaux,' Mémoires de L'Académie, 1732. [31] L. V. King, 'XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry,' Philosophical transactions of the royal society of London. series A, containing papers of a mathematical or physical character, vol. 214, no. 509-522, pp. 373-432, 1914. [32] Y. Yeh and H. Cummins, 'Localized fluid flow measurements with an He–Ne laser spectrometer,' Applied Physics Letters, vol. 4, no. 10, pp. 176-178, 1964. [33] A. Molki, L. Khezzar, and A. Goharzadeh, 'Measurement of fluid velocity development in laminar pipe flow using laser Doppler velocimetry,' European Journal of Physics, vol. 34, no. 5, p. 1127, 2013. [34] C. Schugger and U. Renz, 'Experimental investigation of the primary breakup zone of high pressure diesel sprays from multi-orifice nozzles,' in 9 th International conference on liquid atomization and spray system, ICLASS, 2003. [35] A. M. Rudolph and M. A. Heymann, 'The circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow,' Circulation research, vol. 21, no. 2, pp. 163-184, 1967. [36] O. A. Larsen, N. Lassen, and F. Quaade, 'Blood flow through human adipose tissue determined with radioactive xenon,' Acta physiologica Scandinavica, vol. 66, no. 3, pp. 337-345, 1966. [37] C. Black, R. Clark, K. Darton, M. Goff, T. Norman, and H. Spikes, 'A pyroelectric thermal imaging system for use in medical diagnosis,' Journal of biomedical engineering, vol. 12, no. 4, pp. 281-286, 1990. [38] A. Zontak, S. Sideman, O. Verbitsky, and R. Beyar, 'Dynamic thermography: analysis of hand temperature during exercise,' Annals of biomedical engineering, vol. 26, no. 6, pp. 988-993, 1998. [39] A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, 'Dynamic imaging of cerebral blood flow using laser speckle,' Journal of Cerebral Blood Flow Metabolism, vol. 21, no. 3, pp. 195-201, 2001. [40] J. W. Goodman, 'Some effects of target-induced scintillation on optical radar performance,' Proceedings of the IEEE, vol. 53, no. 11, pp. 1688-1700, 1965. [41] T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, 'Use of laser speckle flowgraphy in ocular blood flow research,' Acta ophthalmologica, vol. 88, no. 7, pp. 723-729, 2010. [42] W. Wongsaroj, A. Hamdani, N. Thong-Un, H. Takahashi, and H. Kikura, 'Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using a Single Resonant Frequency,' in Multidisciplinary Digital Publishing Institute Proceedings, 2018, vol. 2, no. 8, p. 549. [43] P. Hoskins, 'Haemodynamics and blood flow measured using ultrasound imaging,' Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, no. 2, pp. 255-271, 2010. [44] R. Bonner and R. Nossal, 'Model for laser Doppler measurements of blood flow in tissue,' Applied optics, vol. 20, no. 12, pp. 2097-2107, 1981. [45] A. Lima and J. Bakker, 'Noninvasive monitoring of peripheral perfusion,' Applied physiology in intensive care medicine, pp. 131-141, 2006. [46] V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, 'Review of methodological developments in laser Doppler flowmetry,' Lasers in medical science, vol. 24, no. 2, pp. 269-283, 2009. [47] S.-H. Liu, R.-X. Li, J.-J. Wang, W. Chen, and C.-H. Su, 'Classification of photoplethysmographic signal quality with deep convolution neural networks for accurate measurement of cardiac stroke volume,' Applied Sciences, vol. 10, no. 13, p. 4612, 2020. [48] P.-Y. Chiang et al., 'Machine learning classification for assessing the degree of stenosis and blood flow volume at arteriovenous fistulas of hemodialysis patients using a new photoplethysmography sensor device,' Sensors, vol. 19, no. 15, p. 3422, 2019. [49] T. R. Dawber, H. E. THomas Jr, and P. M. McNamara, 'Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease,' Angiology, vol. 24, no. 4, pp. 244-255, 1973. [50] S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, 'Contour analysis of the photoplethysmographic pulse measured at the finger,' Journal of hypertension, vol. 24, no. 8, pp. 1449-1456, 2006. [51] 陳偉光、王泰鴻, 深知你心:心臟檢查面面觀. 知出版有限公司, 2007. [52] C. A. SENSORS. '12-Lead ECG Placement Guide with Illustrations.' CABLES AND SENSORS. https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations#1 (accessed Jun 1, 2021). [53] A. Gacek, 'An introduction to ECG signal processing and analysis,' in ECG Signal Processing, Classification and Interpretation: Springer, 2012, pp. 21-46. [54] H. E. Redmond, K. D. Dial, and J. E. Thompson, 'Light scattering and absorption by wind blown dust: Theory, measurement, and recent data,' Aeolian Research, vol. 2, no. 1, pp. 5-26, 2010. [55] C. Bohren, D. Huffman, and Z. Kam, 'Book-review-absorption and scattering of light by small particles,' Nature, vol. 306, no. 5943, p. 625, 1983. [56] C. Doppler, Über das farbige Licht der Doppelsterne. 1903. [57] J. Lequeux, 'The Doppler-Fizeau effect,' in Hippolyte Fizeau: EDP Sciences, 2021, pp. 27-44. [58] P. F. d. A. Tafner, F. K. Chen, R. Rabello Filho, T. D. Corrêa, R. C. d. F. Chaves, and A. Serpa Neto, 'Recent advances in bedside microcirculation assessment in critically ill patients,' Revista Brasileira de terapia intensiva, vol. 29, no. 2, pp. 238-247, 2017. [59] A. P. Shepherd and P. Å. Öberg, Laser-Doppler blood flowmetry. Springer Science Business Media, 2013. [60] 祁忠勇. 'FFT與訊號處理簡介.' 中央研究院 數學傳播 十八卷四期. https://web.math.sinica.edu.tw/math_media/d184/18403.pdf (accessed Jul 19, 2021). [61] R. Klabunde, Cardiovascular physiology concepts. Lippincott Williams Wilkins, 2011. [62] 王俊雄, '基於小波函數解析之創新光學系統研究與開發:光子都卜勒干涉儀及生理訊號量測,' 博士, 應用力學研究所, 國立臺灣大學, 台北市, 2020. [63] R. Seeley, T. Stephens, and P. Tate, 'Anatomy and Physiology, edn,' Mosby College, 1995. [64] A. R. Dyer et al., 'Pulse pressure—III. Prognostic significance in four Chicago epidemiologic studies,' Journal of chronic diseases, vol. 35, no. 4, pp. 283-294, 1982. [65] G. F. Mitchell et al., 'Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function,' Circulation, vol. 96, no. 12, pp. 4254-4260, 1997. [66] 周先樂, 人體生理學. 藝軒圖書出版社, 2001. [67] K. Nishihara et al., 'Development of a wireless sensor for the measurement of chicken blood flow using the laser Doppler blood flow meter technique,' IEEE Transactions on Biomedical Engineering, vol. 60, no. 6, pp. 1645-1653, 2013. [68] D. Kernick, J. Tooke, and A. Shore, 'The biological zero signal in laser Doppler fluximetry–origins and practical implications,' Pflügers Archiv, vol. 437, no. 4, pp. 624-631, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79788-
dc.description.abstract"目前最為廣泛的血壓量測方法為聽音診斷法及示波振幅法,這兩種方法於量測過程中均須使用脈壓袖帶以阻斷血流,過程中可能會造成受試者的不適且無法進行連續性地監控,故有許多研究致力於開發非接觸式的連續監控血壓方法,先前曾有研究透過材料力學及流體力學的觀點,推導出以血液體積流率、脈衝傳遞時間(Pulse Transit Time, PTT)、心率及血管管徑變化等作為參數之血壓迴歸模型,其中血液體積流率參數僅使用光體積描記法(Photoplethysmography, PPG)之波形斜率作為參考依據,因此本研究將使用非接觸光學方法進行人體血液流速之量測,並結合各項生理參數進行迴歸分析,期望使原始血壓迴歸模型更為完善。 本研究將使用光纖搭載環形器之雷射都卜勒流速儀(Laser Doppler Flowmetry, LDF)進行流速之量測,為了驗證光學系統可行性及都卜勒散射理論之正確性,於人體量測之前,預先進行管流流速量測實驗以簡化及模擬人體量測時之光學行為,透過分析干涉訊號之功率譜及計算結果得知,平均流速與其功率譜一次矩成正比關係,其結果與理論相符合。此外,由隨時間變化之流速分析結果可以得知此LDF具備了良好的相對流速快慢之分辨率,並可將其應用於人體血流量測。 於人體量測上除了LDF進行血液流速量測外,還另外搭配商用儀器量測心電圖(Electrocardiography, ECG)及 PPG,以獲取PTT及心率。將所量測到之各項生理參數代入使用血液流速參數之迴歸模型中以評估平均動脈壓(Mean Arterial Pressure, MAP),並與使用PPG波形斜率之迴歸模型進行比較與分析,經單一受試者和複數受試者迴歸後的統計結果顯示,使用血液流速之迴歸模型比起使用PPG波形斜率之迴歸模型具備了更好的預測能力,且於每位受試者之迴歸結果均為血液流速參數為影響MAP高低之主要因素,因此證明了使用血液流速資訊作為迴歸參數確實對於模型上有顯著的改善。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:11:22Z (GMT). No. of bitstreams: 1
U0001-1008202117255100.pdf: 6320243 bytes, checksum: 88ab6e0e0cc4677724d5c0fd2f3a7a0f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xiii 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 血壓的形成與量測方法 2 1.2.2 傳統流體量測技術 12 1.2.3 人體血流量測技術 14 1.2.4 人體生理訊號 20 1.3 研究方法及目標 23 1.4 論文架構 24 第2章 研究原理 25 2.1 散射現象 25 2.2 都卜勒效應 28 2.3 光學干涉原理 33 2.4 頻譜分析 34 2.4.1 功率譜 34 2.4.2 離散傅立葉轉換 36 2.4.3 快速傅立葉轉換 37 2.5 血壓迴歸模型與迴歸分析 39 2.5.1 血壓迴歸模型 39 2.5.2 迴歸分析 41 第3章 雷射都卜勒技術應用於不同量測情況之分析 46 3.1 位移平台振動速度量測實驗 46 3.1.1 位移平台實驗架設 46 3.1.2 振動速度量測實驗結果 47 3.2 管流流速量測實驗 50 3.2.1 實驗架設與元件 50 3.2.2 蠕動幫浦穩定性分析 52 3.2.3 光路調校 54 3.2.4 量測訊號處理流程 56 3.2.5 管流平均流速量測 57 3.2.6 隨時間變化之管流流速量測 61 第4章 雷射都卜勒流速儀之人體血流量測 66 4.1 人體血液流速量測光路架構 66 4.2 量測治具設計 67 4.3 人體量測實驗架設 69 4.4 人體血流與生理參數之量測結果 70 4.5 不同參數對於迴歸模型之分析與比較 72 4.5.1 單一受試者不同參數之迴歸模型比較與討論 73 4.5.2 複數受試者不同參數之迴歸模型比較與討論 78 第5章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 87 參考文獻 88
dc.language.isozh-TW
dc.subject連續血壓量測zh_TW
dc.subject血液流速zh_TW
dc.subject平均動脈壓zh_TW
dc.subject雷射都卜勒流速儀zh_TW
dc.subject迴歸模型zh_TW
dc.subjectblood flow velocityen
dc.subjectcontinuous blood pressure monitoringen
dc.subjectlaser Doppler flowmetryen
dc.subjectregression modelen
dc.subjectmean arterial pressureen
dc.title以非接觸光學法量測血液流速並估算平均動脈壓zh_TW
dc.titleUsing non-contact optical method to measure blood flow velocity and estimate mean arterial pressureen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor吳光鐘(Kuang-Chong Wu)
dc.contributor.oralexamcommittee黃君偉(Hsin-Tsai Liu),李翔傑(Chih-Yang Tseng),李舒昇
dc.subject.keyword連續血壓量測,血液流速,平均動脈壓,雷射都卜勒流速儀,迴歸模型,zh_TW
dc.subject.keywordcontinuous blood pressure monitoring,blood flow velocity,mean arterial pressure,laser Doppler flowmetry,regression model,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202102251
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202117255100.pdf6.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved